

SWISH-Enhanced is a fast, powerful, flexible, free, and easy to use system for indexing collections of
Web pages or other text files. Key features include the ability to limit searches to certain HTML tags
(META, TITLE, comments, etc.). SWISH-E is an enhanced version of SWISH, which was originally
written by Kevin Hughes and modified and released with his permission.

 is a new version with much of the code base rewritten for additional features, increased speed
of indexing and searching, and improved security. See the SWISH-E L file for a list of features, down-
loading instructions, documentation overview, and support information.

A product with a similar-sounding name, but completely different is SWISH++.

Swish Version 2.4.3
Documentation created on Dec, 1 2005

SWISH-E is distributed with no warranty under the terms of the GNU Public License,
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Public questions may be posted to the SWISH-E Discussion.

1 1 Dec 2005

SWISH-Enhanced

http://www.best.com/~pjl/software/swish/
http://www.fsf.org/copyleft/gpl.html
http://swish-e.org/Discussion/

1 The Swish-e README File

 1 Dec 20052

1 The Swish-e README File

1.1 Upgrading?
If you are upgrading Swish-e, please review the CHANGES file before installation. The index format may
change and existing indexes may need to be re-created before use.

1.2 What is Swish-e?
Swish-e is Simple Web Indexing System for Humans - Enhanced. Swish-e can quickly and easily index
directories of files or remote web sites and search the generated indexes.

Swish-e is extremely fast in both indexing and searching, highly configurable, and can be seamlessly inte-
grated with existing web sites to maintain a consistent design. Swish-e can index web pages, but can just
as easily index text files, mailing list archives, or data stored in a relational database.

Swish is designed to index small- to medium-sized collection of documents, Although a few users are
indexing over a million documents, typical usage is more often in the tens of thousands. Currently,
Swish-e only indexes eight bit character encodings.

Swish-e version 2.2 was a major rewrite of the code and the addition of many new features. Memory
requirements for indexing have been reduced and indexing speed is significantly improved from previous
versions. New features allow more control over indexing, better document parsing, improved indexing and
searching logic, better filter code, and the ability to index from any data source.

Swish-e version 2.4 includes a major rewrite of the C API and a new Perl module for accessing the
Swish-e C library. In addition, Swish-e 2.4 uses the GNU Auto Tools. The significant changes are where
files are installed, and the use of Libtool to create the Swish-e library as a shared library on many plat-
forms. Basically, installation is easier than previous versions, and more files are installed in "standard"
locations (e.g. documentation is installed in $prefix/share/doc/swish-e).

Note: Due to the new build and installation system in Swish-e 2.4, some documentation may incorrectly
list the location of files. Please report any documentation errors to the Swish-e Discussion list.

Swish-e is not a "turn-key" indexing and searching solution. The Swish-e distribution contains most of the
parts to create such a system, but you need to put the parts together as best meets your needs. This gives
you the power to index and search your documents the way you wish and to seamlessly integrate a search
engine into your web site or application.

To use Swish-e, you will need to configure Swish-e to index your documents, create an index by running
Swish-e, and setup an interface such as a CGI script (a script is included) to search the index and display
results. Swish uses helper programs to index documents of types that Swish-e cannot natively index.
These programs may need to be installed separately from Swish-e.

Swish-e is an Open Source (see: http://opensource.org) program supported by developers and a large
group of users. Please take time to join the Swish-e discussion list at http://Swish-e.org .

3 1 Dec 2005

1.1 Upgrading?SWISH-Enhanced: The Swish-e README File

http://opensource.org/
http://Swish-e.org/

1.2.1 Key features

Quickly index a large number of documents in different formats including text, HTML, and XML.

Use "filters" to index other types of files such as PDF, gzip, or PostScript.

Includes a web spider for indexing remote documents over HTTP. Follows Robots Exclusion Rules
(including META tags).

Can use an external program to supply documents to Swish-e, such as an advanced spider for your
web server or a program to read and format records from a relational database.

Document "properties" (some subset of the source document, usually defined as a META or XML
elements) may be stored in the index and returned with search results.

Document summaries can be returned with each search.

Word stemming, soundex, metaphone, and double-metaphone indexing for "fuzzy" searching

Phrase searching and wildcard searching

Limit searches to HTML links.

Use powerful Regular Expressions to select documents for indexing or exclusion.

Easily limit searches to parts or all of your web site.

Results can be sorted by relevance or by any number of properties in ascending or descending order.

Limit searches to parts of documents such as certain HTML tags (META, TITLE, comments, etc.) or
to XML elements.

Can report structural errors in your XML and HTML documents.

Index file is portable between platforms.

A Swish-e library is provided to allow embedding Swish-e into your applications for very fast
searching. A Perl module is available that provides a standard API for accessing Swish-e.

Includes example search script with context summaries and search term and phrase highlighting. Can
be used with popular Perl templating systems.

Swish-e is fast.

It’s Open Source and FREE! You can customize Swish-e and you can contribute your fancy new
features to the project.

 1 Dec 20054

1.2.1 Key features

Supported by on-line user and developer groups.

1.3 Where do I get Swish-e?
The current version of Swish-e can be found at:

http://Swish-e.org

Please make sure you use a current version of Swish-e.

Information about Windows binary distributions can also be found at this site.

1.4 How Do I Install Swish-e?
Read the INSTALL page.

Building from source is recommended. On most platforms, Swish-e should build without problems. A list
of platforms where Swish-e has been built can be found in the INSTALL page. Information on building
for VMS and Win32 can be found in sub-directories of the src directory. Check the Swish-e site for
information about binary distributions (such as for Windows).

In addition to the INSTALL page, make sure you read the SWISH-FAQ page if you have any questions,
or to get an idea of questions that you might someday ask.

Problems or questions about installing Swish-e should be directed to the Swish-e discussion list (see the
Swish-e web site at http://Swish-e.org).

Please read Where do I get help with Swish-e? below before posting any questions to the
Swish-e list.

1.5 The Swish-e Documentation
Documentation is provided as HTML pages installed in $prefix/share/doc/swish-e where $prefix is
/usr/local if building from source, or /usr if installed as part of a package from your OS vendor. Under
Windows $prefix is selected at installation time.

A subset of the documentation is installed as system man pages as well.

Documentation is also available on-line at http://swish-e.org.

If your system includes the required support files and programs, the distribution make files can also gener-
ate the documentation in these formats:

 Postscript
 PDF (Adobe Acrobat)

5 1 Dec 2005

1.3 Where do I get Swish-e?SWISH-Enhanced: The Swish-e README File

http://Swish-e.org/
http://Swish-e.org/
http://swish-e.org./

See INSTALL for information on creating the PDF and Postscript versions of the documentation.

Patches or updates to the documentation should be done against the POD files, located in the pod directory
of the distribution, or (preferably) against the CVS repository.

1.6 Where do I get help with Swish-e?
If you need help with installing or using Swish-e, please subscribe to the Swish-e mailing list. Visit the
Swish-e web site (listed above) for information on subscribing to the mailing list.

Before posting any questions, please read QUESTIONS AND TROUBLESHOOTING.

1.7 Speling mistakes
Please contact the Swish-e list with corrections to this documentation. Any help in cleaning up the docs
will be appreciated!

Any patches should be made against the .pod files, not the .html files.

1.8 Swish-e Development
Swish-e is currently being developed as an Open-Source project on SourceForge http://sourceforge.net.

Contact the Swish-e list for questions about Swish-e development.

1.9 Swish-e’s History
SWISH was created by Kevin Hughes, circa 1994, to fill the need of the growing number of Web adminis-
trators on the Internet - many of the indexing systems were not well documented, were hard to use and
install, and were too complex for their own good. The system was widely used for several years, long
enough to collect some bug fixes and requests for enhancements.

In Fall 1996, The Library of UC Berkeley received permission from Kevin Hughes to implement bug
fixes and enhancements to the original binary. The result is Swish-enhanced or Swish-e, brought to you by
the Swish-e Development Team.

1.10 Document Info
Each document in the Swish-e distribution contains this section. It refers only to the specific page it’s
located in, and not to the Swish-e program or the documentation as a whole.

$Id: README.pod,v 1.19 2004/10/02 23:56:30 whmoseley Exp $

 1 Dec 20056

1.6 Where do I get help with Swish-e?

http://sourceforge.net./

.

7 1 Dec 2005

1.10 Document InfoSWISH-Enhanced: The Swish-e README File

2 INSTALL - Swish-e Installation Instructions

 1 Dec 20058

2 INSTALL - Swish-e Installation Instructions

2.1 OVERVIEW
This document describes how to download, build, and install Swish-e from source. Also found below is a
basic overview of using Swish-e to index documents, with pointers to other, more advanced examples.

This document also provides instructions on how to get help installing and using Swish-e (and the impor-
tant information you should provide when asking for help). Please read these instructions before request-
ing help on the Swish-e discussion list. See QUESTIONS AND TROUBLESHOOTING.

Although building from source is recommended, some OS distributions (e.g., Debian) provide
pre-compiled binaries. Check with your distribution for available packages. Build from source, if your
distribution does not offer the current version of Swish-e.

Also, please read the Swish-e FAQ (SWISH-FAQ), as it answers many frequently-asked questions.

Swish-e knows how to index HTML, XML, and plain text documents. Helper applications and other tools
are used to convert documents such as PDF or MS Word into a format that Swish-e can index. These addi-
tional applications and tools (listed below) must be installed separately. The process of converting docu-
ments is called "filter ing".

NOTE: Swish-e version 4.2.0 installs a lot more files when running "make install". Be aware that the
Swish-e documentation may thus include errors about where files are located. Please notify the Swish-e
discussion list of any documentation errors.

2.1.1 Upgrading from previous versions of Swish-e

If you are upgrading from a previous version of Swish-e, read the CHANGES page first. The Swish-e
index format may have changed and existing indexes may not work with the newer version of Swish-e.

If you have existing indexes, you may need to re-index your data before running the "make install" step
described below. Swish-e may be run from the build directory after compiling, but before installation.

2.1.2 Windows Users

A Windows binary version is available as a separate download from the Swish-e site (http://swish-e.org).
Many of the installation instructions below will not apply to Windows users; the Windows version is
pre-compiled and includes libxml2, zlib, xpdf, and catdoc.

A number of Perl modules may also be needed. These can be installed with ActiveState’s PPM utility.

 libwww-perl - the LWP modules (for spidering)
 HTML-Tagset - used by web spider
 HTML-Parser - used by web spider
 MIME-Types - used for filtering documents when not spidering
 HTML-Template - formatting output from swish.cgi (optional)
 HTML-FillInForm (if HTML-Template is used)

9 1 Dec 2005

2.1 OVERVIEWSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

2.2 SYSTEM REQUIREMENTS
Swish-e makes use of a number of libraries and tools that are not distributed with Swish-e. Some libraries
need to be installed before building Swish-e from source; other tools can be installed at any time. See
below for details.

2.2.1 Software Requirements

Swish-e is written in C. It has been tested on a number of platforms, including Sun/Solaris, Dec Alpha,
BSD, Linux, Mac OS X, and Open VMS.

The GNU C compiler (gcc) and GNU make are strongly recommended. Repeat: you will find life easier if
you use the GNU tools.

2.2.2 Optional but Recommended Packages

Most of the packages listed below are available as easily installable packages. Check with your operating
system vendor or install them from source. Most are very common packages that may already be installed
on your computer.

As noted below, some packages need to be installed before building Swish-e from source, while others
may be added after Swish-e is installed.

Libxml2

libxml2 is very strongly recommended. It is used for parsing both HTML and XML files. Swish-e can
be built and installed without libxml2, but the HTML parser that is built into Swish-e is not as accu-
rate as libxml2.

 http://xmlsoft.org/

libxml2 must be installed before Swish-e is built, or it will not be used.

If libxml2 is installed in a non-standard location (e.g., libxml2 is built with --prefix
$HOME/local), make sure that you add the bin directory to your $PATH before building Swish-e.
Swish-e’s configure script uses a program created by libxml2 (xml2-config) to find the location
of libxml2. Use which xml2-config to verify that the program can be found where expected.

Zlib Compression

The Zlib compression library is commonly installed on most systems and is recommended for use
with Swish-e. Zlib is used for compressing text stored in the Swish-e index.

 http://www.gzip.org/zlib/

 1 Dec 200510

2.2 SYSTEM REQUIREMENTS

http://xmlsoft.org/
http://www.gzip.org/zlib/

Zlib must be installed before building Swish-e.

Perl Modules

Although Swish-e is a compiled C program, many support features use Perl. For example, both the
web spiders and modules to help with filtering documents are written in Perl.

The following Perl modules may be required. Check your current Perl installation, as many may
already be installed.

 LWP
 URI
 HTML::Parser
 HTML::Tagset
 MIME::Types (optional)

Note that installing Bundle::LWP with the CPAN module

 perl -MCPAN -e ’install Bundle::LWP’

will install many of the above modules.

If you wish to use HTML-Template with swish.cgi to generate output, install:

 HTML::Template
 HTML::FillInForm

If you wish to use Template-Toolkit with swish.cgi to generate output, install:

 Template

Questions about installing these modules may be sent to the Swish-e discussion list.

The search.cgi example script requires both Template-Toolkit and HTML::Fill -
InForm .

Indexing PDF Documents

Indexing PDF files requires the xpdf package. This is a common package, available with most oper-
ating systems and often provided as an add-on package.

 http://www.foolabs.com/xpdf/

Xpdf may be added after Swish-e is installed.

11 1 Dec 2005

2.2.2 Optional but Recommended PackagesSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

http://www.foolabs.com/xpdf/

Indexing MS Word Documents

Indexing MS Word documents requires the Catdoc program.

 http://www.45.free.net/~vitus/ice/catdoc

Catdoc may be added after Swish-e is installed.

Indexing MP3 ID3 Tags

Indexing MP3 ID3 Tags requires the MP3::Tag Perl module. See http://search.cpan.org.
MP3::Tag may be installed after Swish-e is installed.

Indexing MS Excel Files

Indexing MS Excel files is supported by the following Perl modules, also available at
http://search.cpan.org.

 Spreadsheet::ParseExcel
 HTML::Entities

These Perl modules may be installed after Swish-e is installed.

2.3 INSTAL LA TION
Here are brief installation instructions that should work in most cases. Following this section are more
detailed instructions and examples.

2.3.1 Building Swish-e

Download Swish-e using your favorite web browser or a utility such as wget , lynx , or lwp-down -
load . Unpack and build the distribution, using the following steps:

Note: "swish-e-2.4.0" is used as an example. Download the most current available version and adjust the
commands below! Also, if you are running Debian, see the notes below on building a .deb package from
the Swish-e source package.

Pay careful attention to the "prompt" character used on the following command lines. A "$" prompt indi-
cates steps run as an unprivileged user. A "#" indicates steps run as the superuser (root).

 $ wget http://swish-e.org/Download/swish-e-2.4.0.tar.gz
 $ gzip -dc swihs-e-2.4.0.tar.gz | tar xof -
 $ cd swish-e-2.4.0 (this directory will depend on the version of Swish-e)

 1 Dec 200512

2.3 INSTALLATION

http://www.45.free.net/~vitus/ice/catdoc
http://search.cpan.org./
http://search.cpan.org./
http://swish-e.org/Download/swish-e-2.4.0.tar.gz

 $./configure
 $ make
 $ make check
 ...
 ==================
 All 3 tests passed
 ==================

 $ su root (or use sudo)
 (enter password)

 # make install
 # exit
 $ swish-e -V
 SWISH-E 2.4.0

IMPOR TANT : Once Swish-e is installed, do not run it as the superuser (root) -- root is only required
during the installation step, when installing into system directories. Please do not break this rule.

NOTE: If you are upgrading from an older version of Swish-e, be sure and review the CHANGES file.
Old index files may not be compatible with newer versions of Swish-e. After building Swish-e (but before
running "make install"), Swish-e can be run from the build directory:

 $ src/swish-e -V

To minimize downtime, create new index files before running "make install", by using Swish-e from the
build directory. Then, copy the index files to the live location and run "make install":

 $ src/swish-e -c /path/to/config -f index.new

Keep in mind that the location you index from may affect the paths stored in the index file.

2.3.2 Installing without root access

Here’s another installation example. This might be used if you do not have root access or you wish to
install Swish-e someplace other than /usr/local .

This example also shows building Swish-e in a "build" directory that is separate from where the source
files are located. This is the recommended way to build Swish-e, but it requires GNU Make. Without
GNU Make, you will likely need to build from within the source directory, as shown in the previous
example.

 $ tar zxof swish-e-2.4.0.tar.gz (GNU tar with "z" option)
 $ mkdir build
 $ cd build

13 1 Dec 2005

2.3.2 Installing without root accessSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

Note that the current directory is not where Swish-e was unpacked.

Swish-e uses a configure script. configure has many options, but it uses reasonable and standard defaults.
Running

 $../swish-e-2.4.0/configure --help

will display the options.

Two options are of common interest: --prefix sets the top-level installation directory;
--disable-shared will link Swish-e statically, which may be needed on some platforms (Solaris 2.6,
perhaps).

Platforms may require varying link instructions when libraries are installed in non-standard locations.
Swish-e uses the GNU autoconf tools for building the package. autoconf is good at building and testing,
but still requires you to provide information appropriate for your platform. This may mean reading the
manual page for your compiler and linker to see how to specify non-standard file locations.

For most Unix-type platforms, you can use LDFLAGS and CPPFLAGS environment variables to specify
paths to "include" (header) files and to libraries that are not in standard locations.

In this example, we do not have root access. We have installed libxml2 and libz in $HOME/local .
Swish-e will also be installed in $HOME/local (by using the --prefix setting).

In this case, you would need to add $HOME/local/bin to the start of your shell’s $PATH setting. This
is required because libxml2 installs a program that is used when running the configure script. Before
running configure, type:

 $ which xml2-config

It should list $HOME/local/bin/xml2-config .

Now run configure (remember, we are in a separate "build" directory):

 $../swish-e-2.4.0/configure \
 --prefix=$HOME/local \
 CPPFLAGS=-I$HOME/local/include \
 LDFLAGS="-R$HOME/local/lib -L$HOME/local/lib"

 $ make >/dev/null (redirect output to only see warnings and errors)

 $ make check
 ...
 ==================
 All 3 tests passed
 ==================

 1 Dec 200514

2.3.2 Installing without root access

 $ make install
 $ $HOME/local/bin/swish-e -V
 SWISH-E 2.4.0

Note the use of double quotes in the LDFLAGS line above. This allows $HOME to be expanded within the
text string.

2.3.3 Run-time paths

The -R option says to add a specified path (or paths) to those that are used to find shared libraries at run
time. These paths are stored in the Swish-e binary. When Swish-e is run, it will look in these directories
for shared libraries.

Some platforms may not support the -R option. In this event, set the LD_RUN_PATH environment vari-
able before running make.

Some systems, such as Redhat, do not look in /usr/local/lib for libraries. In these cases, you can
either use -R , as above, when building Swish-e or add /usr/local/lib to /etc/ld.so.conf and
run ldconfig as root.

If all else fails, you may need to actually read the man pages for your platform.

2.3.4 Building a Debian Package

The Swish-e distribution includes the files required to build a Debian package.

 $ tar zxof swish-e-2.4.0.tar.gz (GNU tar with "z" option)
 $ cd swish-e-2.4.0
 $ fakeroot debian/rules binary
 [lots of output]
 dpkg-deb: building package ‘swish-e’ in ‘../swish-e_2.4.0-0_i386.deb’.
 $ su
 # dpkg -i ../swish-e_2.4.0-0_i386.deb

2.3.5 What’s installed

Swish installs a number of files. By default, all files are installed below /usr/local , but this can be
changed by setting --prefix when running configure (as shown above). Individual paths may also be
set. Run config ure --help for details.

 $prefix/bin/swish-e The Swish-e binary program
 $prefix/share/doc/swish-e/ Full documentation and examples
 $prefix/lib/libswish-e The Swish-e C library
 $prefix/include/swish-e.h The library header file
 $prefix/man/man1/ Documentation as manual pages
 $prefix/lib/swish-e/ Helper programs (spider.pl, swishspider, swish.cgi)
 $prefix/lib/swish-e/perl/ Perl helper modules

15 1 Dec 2005

2.3.3 Run-time pathsSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

Note that the Perl modules are not installed in the system Perl library. Swish-e and the Perl scripts that
require the modules know where to find the modules, but the perldoc program (used for reading documen-
tation) does not. This can be corrected by adding $prefix/lib/swish-e and
$prefix/lib/swish-e/perl to the PERL5LIB environment variable.

2.3.6 Documentation

Documentation can be found in the $prefix/share/doc/swish-e directory. Documentation can
also be read on-line at the Swish-e web site:

 http://swish-e.org/

2.3.7 The Swish-e documentation as man(1) pages

Running "make install" installs some of the Swish-e documentation as man pages. The following man
pages are installed:

 SWISH-FAQ(1)
 SWISH-CONFIG(1)
 SWISH-RUN(1)
 SWISH-LIBRARY(1)

The man pages are installed, by default, in the system man directory. This directory is determined when
configure is run; it can be set by passing a directory name to configure.

For example,

 ./configure --mandir=/usr/local/doc/man

The man directory is specified relative to the --prefix setting. If you use --prefix , you do not
normally need to also specify --mandir .

Information on running configure can be found by typing:

 ./configure --help

2.3.8 Join the Swish-e discussion list

The final step, when installing Swish-e, is to join the Swish-e discussion list.

The Swish-e discussion list is the place to ask questions about installing and using Swish-e, see or post
bug fixes or security announcements, and offer help to others. Please do not contact the developers
directly.

 1 Dec 200516

2.3.6 Documentation

http://swish-e.org/

The list is typically very low traffic, so it won’t overload your inbox. Please take the time to subscribe. See
http://Swish-e.org.

If you are using Swish-e on a public site, please let the list know, so that your URL can be added to the list
of sites that use Swish-e!

Please review the next section before posting questions to the Swish-e list.

2.4 QUESTIONS AND TROUBLESHOOTING
Support for installation, configuration, and usage is available via the Swish-e discussion list. Visit
http://swish-e.org for information. Do not contact developers directly for help -- always post your question
to the list.

It’s very important to provide the right information when asking for help.

Please search the Swish-e list archive before posting a question. Also, check the SWISH-FAQ to see if
your question has already been asked and answered.

Before posting, use the available tools to narrow down the problem.

Swish-e has several switches (e.g., -T , -v , and -k) that may help you resolve issues. These switches are
described on the SWISH-RUN page. For example, if you cannot find a document by a keyword that you
believe should be indexed, try indexing just that single file and use the -T INDEXED_WORDS option to
see if the word is actually being indexed. First, try it without any changes to default settings:

 swish-e -i testdoc.html -T indexed_words | less

if that works, add in your configuration file:

 swish-e -i testdoc.html -c swish.conf -T indexed_words | less

If it still isn’t working as you expect, try to reduce the test document to a very small example. This will be
very helpful to your readers, when you are asking for help.

Another useful trick is to use -H9 when searching, to display full headers in search results. Look at the
"Parsed Words" header to see what words Swish-e is searching for.

2.4.1 When posting, please provide the following information:

Use these guidelines when asking for help. The most important tip is to provide the least amount of infor-
mation that can be used to reproduce your problem. Do not paraphrase output -- copy-and-paste -- but trim
text that is not necessary.

17 1 Dec 2005

2.4 QUESTIONS AND TROUBLESHOOTINGSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

http://Swish-e.org./
http://swish-e.org/

The exact version of Swish-e that you are using. Running Swish-e with the -V switch will print the
version number. Also, supply the output from uname -a or similar command that identifies the
operating system you are running on. If you are running an old version of swish, be prepared for a
response of "upgrade" to your question.

A summary of the problem. This should include the commands issued (e.g. for indexing or searching)
and their output, along with an explanation of why you don’t think it’s working correctly. Please
copy-and-paste the exact commands and their output, instead of retyping, to avoid errors.

Include a copy of the configuration file you are using, if any. Swish-e has reasonable defaults, so in
many cases you can run it without using a configuration file. But, if you need to use a configuration
file, reduce it down to the absolute minimum number of commands that is required to demonstrate
your problem. Again, copy-and-paste.

A small copy of a source document that demonstrates the problem.

If you are having problems spidering a web server, use lwp-download or wget to copy the file
locally, then make sure you can index the document using the file system method. This will help you
determine if the problem is with spidering or indexing.

If you expect help with spidering, don’t post fake URLs, as it makes it impossible to test. If you don’t
want to expose your web page to the people on the Swish-e list, find some other site to test spidering
on. If that works, but you still cannot spider your own site, you may need to request help from others.
If so, you must post your real URL or make a test document available via some other source.

If you are having trouble building Swish-e, please copy-and-paste the output from make (or from
./config ure , if that’s where the problem is).

The key is to provide enough information so that others may reproduce the problem.

2.5 ADDI TIONAL INSTAL LA TION OPTIONS
These steps are not required for normal use of Swish-e.

2.5.1 The SWISH::API Perl Module

The Swish-e distribution includes a module that provides a Perl interface to the Swish-e C library. This
module provides a way to search a Swish-e index without running the Swish-e program. Searching an
index will be many times faster when running under a persistent environment such as Apache/mod_perl
with the SWISH::API module.

See the perl/README file for information on installing and using the SWISH::API Perl module.

 1 Dec 200518

2.5 ADDITIONAL INSTALLATION OPTIONS

2.5.2 Creating PDF and Postscript documentation

The HTML version of the Swish-e documentation was created with Pod::HtmlP sPdf , a package of
Perl modules written and/or modified by Stas Bekman to automate the conversion of documents in POD
format (see perldoc perlpod) to HTML, PostScript, and PDF. A slightly modified version of this
package is included with the Swish-e distribution and used for building the HTML.

If your system has the necessary tools to build PostScript and the converter ps2pdf is installed, you may
be able to build the PostScript and PDF versions of the documentation. After you have run configure, go
to the doc directory of the distribution and type:

 make pdf

With any luck, you will end up with the these two files in the top-level directory:

 swish-e_documentation.pdf
 swish-e_documentation.ps

Most people, however, find reading the documentation in HTML to be the most convenient approach.

2.6 GENERAL CONFIGURATION AND USAGE
This section should give you a basic overview of indexing and searching with Swish-e. Other examples
can be found in the conf directory; these will step you through a number of different configurations.
Also, please review the SWISH-FAQ.

Swish-e is a command-line program. The program is controlled by passing switches on the command line.
A configuration file may be used, but often is not required. Swish-e does not include a graphical user
interface. Example CGI scripts are provided in the distribution, but they require additional setup to use.

2.6.1 Introduction to Indexing and Searching

Swish-e can index files that are located on the local file system. For example, running:

 swish-e -i /var/www/htdocs

will index all files in the /var/www/htdocs directory. You may specify one or more files or directo-
ries with the -i option. By default, this will create an index called index.swish-e in the current
directory.

To search the resulting index for a given word, try:

19 1 Dec 2005

2.6 GENERAL CONFIGURATION AND USAGESWISH-Enhanced: INSTALL - Swish-e Installation Instructions

 swish-e -w apache

This will find the word "apache" in the body or title of the indexed documents.

As mentioned above, Swish-e will index all files in a directory, unless instructed otherwise. So, if
/var/www/htdocs contains non-HTML files, you will need a configuration file to limit the files that
Swish-e indexes. Create a file called swish.conf :

 # Example configuration file

 # Tell Swish-e what to index (same as -i switch above)
 IndexDir /var/www/htdocs

 # Only index HTML and text files
 IndexOnly .htm .html .txt

 # Tell Swish-e that .txt files are to use the text parser.
 IndexContents TXT* .txt

 # Otherwise, use the HTML parser
 DefaultContents HTML*

After saving the configuration file, reindex:

 swish-e -c swish.conf

The Swish-e configuration settings are described in the SWISH-CONFIG manual page. The order of state-
ments in the configuration file is typically not important, although some statements depend on previously
set statements. There are many possible settings. Good advice is to use as few settings as possible when
first starting out with Swish-e.

The runtime options (switches) are described in the SWISH-RUN manual page. You may also see a
summary of options by running:

 swish-e -h

Swish-e has two other methods for reading input files. One method uses a Perl helper script and the LWP
Perl library to spider remote web sites:

 swish-e -S http -i http://localhost/index.html -v2

 1 Dec 200520

2.6.1 Introduction to Indexing and Searching

http://localhost/index.html

This will spider the web server running on the local host. The -S option defines the input source method
to be "http", -i specifies the URL to spider, and -v sets the verbose level to two. There are a number of
configuration options that are specific to the -S http input source. See SWISH-CONFIG. Note that only
files of Content-Type text/* will be indexed.

The -S http method is deprecated, however, in favor of a variation on the following input method.

There is a general-purpose input method wherein Swish-e reads input from a program that produces docu-
ments in a special format. The program might read and format data stored in a database, or parse and
format messages in a mailing list archive, or run a program that spiders web sites (like the previous
method).

The Swish-e distribution includes a spider program that uses this method of input. This spider program is
much more configurable and feature-rich than the previous (-S http) method.

To duplicate the previous example, create a configuration file called swish2.conf :

 # Example for spidering
 # Use the "spider.pl" program included with Swish-e
 IndexDir spider.pl

 # Define what site to index
 SwishProgParameters default http://localhost/index.html

Then, create the index using the command:

 swish-e -S prog -c swish2.conf

This says to use the -S prog input source method. Note that, in this case, the IndexDir setting does
not specify a file or directory to index, but a program name to be run. This program, spider.pl , does
the work of fetching the documents from the web server and passing them to Swish-e for indexing.

The Swish Prog Parameters option is a special feature that allows passing command-line parameters
to the program specified with IndexDir . In this case, we are passing the word default (which tells
spider.pl to use default settings) and the URL to spider.

Running a script under Windows requires specifying the interpreter (e.g., perl.exe) and then using
Swish Prop Parameters to specify the script and the script’s parameters. See Notes when using -S
prog on MS Windows on the SWISH-RUN page.

The advantage of the -S prog method of spidering (over the previous -S http method) is that the
Perl code is only compiled once instead of once for every document fetched from the web server. In addi-
tion, it is a much more advanced spider with many, many features. Still, as used here, spider.pl will
automatically index PDF or MS Word documents if (when) Xpdf and Catdoc are installed.

21 1 Dec 2005

2.6.1 Introduction to Indexing and SearchingSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

http://localhost/index.html

A special form of the -S prog input source method is:

 ./myprog --option | swish-e -S prog -i stdin -c config

This allows running Swish-e from a program (instead of running the external program from Swish-e). So,
this also can be done as:

 ./myprog --option > outfile
 swish-e -S prog -i stdin -c config < outfile

or

 ./myprog --option > outfile
 cat outfile | swish-e -S prog -i stdin -c config

One final note about the -S prog input source method. The program specified with -i or IndexDir
needs to be an absolute path. The exception is when the program is installed in the libex ecdir direc-
tory. Then, a plain program name may be specified (as in the example showing spider.pl , above).

All three input source methods are described in more detail on the SWISH-RUN page.

2.6.2 Metanames and Properties

There are two key Swish-e concepts that you need to be familiar with: Metanames and Properties.

Metanames

Swish-e creates a reverse (i.e., inverted) index. Just like an index in a book, you look up a word and it
lists the pages (or documents) where that word can be found.

Swish-e can create multiple index tables within the same index file. For example, you might want to
create an index that only contains words in HTML titles, so that searches can be limited to title text.
Or, you might have descriptive words that you would like to search, stored in a meta tag called
"keywords".

Some database systems might call these different "fields" or "columns", but Swish-e calls them
MetaNames (as a result of its first indexing HTML "meta" tags).

To find documents containing "foo" in their titles, you might run:

 swish-e -w swishtitle=foo

or, a more advanced example:

 1 Dec 200522

2.6.2 Metanames and Properties

 swish-e -w swishtitle=(foo or bar) or swishdefault=(baz)

The Metaname "swishdefault" is the name that is used by Swish-e if no other name is specified. The
following two searches are thus equivalent:

 swish-e -w foo
 swish-e -w swishdefault=foo

When indexing HTML documents, Swish-e indexes words in the body and title under the Metaname
"swishdefault".

Properties

Swish-e’s search result is a list of files -- actually, Swish-e uses file numbers internally. Data can be
associated with each file number when indexing. For example, by default Swish-e associates the
file’s name, title, last modified date, and size with the file number. These items can be printed in
search results.

In Swish-e, this associated data is called a file’s Properties. Properties can be any data you wish to
associated with a document -- in fact, the entire text of the document can be stored in the index. What
data is stored as a Property is controlled by the PropertyNames (and other) configuration directives.

What properties are printed with search results depends on the -x or -p switches. By default,
Swish-e returns the rank, path/URL, title, and file size in bytes for each result.

2.6.3 Getting Started With Swish-e

Swish-e reads a configuration file (see SWISH-CONFIG) for directives that control whether and how
Swish-e indexes files. Swish-e is also controlled by command-line arguments (see SWISH-RUN). Many
of the command-line arguments have equivalent configuration directives (e.g., -i and IndexDir).

Swish-e does not require a configuration file, but most people change its default behavior by placing
settings in a configuration file.

To try the examples below, go to the tests subdirectory of the distribution. The tests will use the
*.html files in this directory when creating the test index. You may wish to review these *.html files
to get an idea of the various native file formats that Swish-e supports.

You may also use your own test documents. It’s recommended to use small test documents when first
using Swish-e.

2.6.4 Step 1: Create a Configuration File

The configuration file controls what and how Swish-e indexes. The configuration file consists of direc-
tives, comments, and blank lines. The configuration file can be any name you like.

23 1 Dec 2005

2.6.3 Getting Started With Swish-eSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

This example will work with the documents in the tests directory. You may wish to review the
tests/test.config configuration file used for the make test tests.

For example, a simple configuration file (swish-e.conf):

 # Example Swish-e Configuration file

 # Define *what* to index
 # IndexDir can point to a directories and/or a files
 # Here it’s pointing to the current directory
 # Swish-e will also recurse into sub-directories.
 IndexDir .

 # But only index the .html files
 IndexOnly .html

 # Show basic info while indexing
 IndexReport 1

And that’s a simple configuration file. It says to index all the .html files in the current directory and
sub-directories, if any, and provide some basic output while indexing.

As mentioned above, the complete list of all configuration file directives is detailed in SWISH-CONFIG.

2.6.5 Step 2: Index your Files

Run Swish-e, using the -c switch to specify the name of the configuration file.

 swish-e -c swish-e.conf

 Indexing Data Source: "File-System"
 Indexing "."
 Removing very common words...
 no words removed.
 Writing main index...
 Sorting words ...
 Sorting 55 words alphabetically
 Writing header ...
 Writing index entries ...
 Writing word text: Complete
 Writing word hash: Complete
 Writing word data: Complete
 55 unique words indexed.
 4 properties sorted.
 5 files indexed. 1252 total bytes. 140 total words.
 Elapsed time: 00:00:00 CPU time: 00:00:00
 Indexing done!

 1 Dec 200524

2.6.5 Step 2: Index your Files

This created the index file index.swish-e . This is the default index file name, unless the IndexFile
directive is specified in the configuration file:

 IndexFile ./website.index

You may use the -f switch to specify a index file at indexing time. The -f option overrides any Index -
File setting that may be in the configuration file.

2.6.6 Step 3: Search

You specify your search terms with the -w switch. For example, to find the files that contain the word
sample , you would issue the command:

 swish-e -w sample

This example assumes that you are in the tests directory. Swish-e returns the following, in response to
this command:

 swish-e -w sample

 # SWISH format: 2.4.0
 # Search words: sample
 # Number of hits: 2
 # Search time: 0.000 seconds
 # Run time: 0.005 seconds
 1000 ./test_xml.html "If you are seeing this, the METATAG XML search was successful!" 159
 1000 ./test.html "If you are seeing this, the test was successful!" 437
 .

So, the word sample was found in two documents. The first number shown is the relevance (or rank) of
the search term, followed by the file containing the search term, the title of the document, and finally, the
length of the document (in bytes).

The period ("."), sitting alone at the end, marks the end of the search results.

Much more information may be retrieved while searching, by using the -x and -H switches (see
SWISH-RUN) and by using Document Properties (see SWISH-CONFIG).

2.6.7 Phrase Searching

To search for a phrase in a document, use double-quotes to delimit your search terms. (The default phrase
delimiter is set in src/swish.h .)

You must protect the quotes from the shell.

25 1 Dec 2005

2.6.6 Step 3: SearchSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

For example, under Unix:

 swish-e -w ’"this is a phrase" or (this and that)’
 swish-e -w ’meta1=("this is a phrase") or (this and that)’

Or under the Windows command.com shell.

 swish-e -w \"this is a phrase\" or (this and that)

The phrase delimiter can be set with the -P switch.

2.6.8 Boolean Searching

You can use the Boolean operators and, or, or not in searching. Without these Boolean operatots, Swish-e
will assume you’re anding the words together.

Here are some examples:

 swish-e -w ’apples oranges’
 swish-e -w ’apples and oranges’ (Same thing)

 swish-e -w ’apples or oranges’

 swish-e -w ’apples or oranges not juice’ -f myIndex

retrieves first the files that contain both the words "apples" and "oranges"; then among those, selects the
ones that do not contain the word "juice".

A few other examples to ponder:

 swish-e -w ’apples and oranges or pears’
 swish-e -w ’(apples and oranges) or pears’ (Same thing)
 swish-e -w ’apples and (oranges or pears)’ (Not the same thing)

Swish processes the query left to right.

See SWISH-SEARCH for more information.

2.6.9 Context Searching

The -t option in the search command line allows you to search for words that exist only in specific
HTML tags. This option takes a string of characters as its argument. Each character represents a different
tag in which the word is searched; that is, you can use any combinations of the following characters:

 1 Dec 200526

2.6.8 Boolean Searching

 H search in all <HEAD> tags
 B search in the <BODY> tags
 t search in <TITLE> tags
 h is <H1> to <H6> (header) tags
 e is emphasized tags (this may be , <I>, , or)
 c is HTML comment tags (<!-- ... -->)

For example:

 # Find only documents with the word "linux" in the <TITLE> tags.
 swish-e -w linux -t t

 # Find the word "apple" in titles or comments
 swish-e -w apple -t tc

2.6.10 META Tags

As mentioned above, Metanames are a way to define "fields" in your documents. You can use the
Metanames in your queries to limit the search to just the words contained in that META name of your
document. For example, you might have a META-tagged field called subjects in your documents. This
would let you search your documents for the word "foo", but only return documents where "foo" is within
the subjects META tag.

Document Properties are somewhat related: Properties allow the content of a META tag in a source docu-
ment to be stored within the index, and that text to be returned along with search results.

META tags can have two formats in your documents.

 <META NAME="keyName" CONTENT="some Content">

And in XML format

 <keyName>
 Some Content
 </keyName>

If using libxml, you can optionally use a non-HTML tag as a metaname:

 <html>
 <body>
 Hello swish users!
 <keyName>
 this is meta data
 </keyName>.
 </body>

27 1 Dec 2005

2.6.10 META TagsSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

This, of course, is invalid HTML.

To continue with our sample Swish-e.conf file, add the following lines:

 # Define META tags
 MetaNames meta1 meta2 meta3

Reindex to include the changes:

 swish-e -c swish-e.conf

Now search, but this time limit your search to META tag meta1 :

 swish-e -w ’meta1=metatest1’

Again, please see SWISH-RUN and SWISH-CONFIG for complete documentation of the various index-
ing and searching options.

2.6.11 Spidering and Searching with a Web form.

This example demonstrates how to spider a web site and set up the included CGI script to provide a
web-based search page. This example uses Perl programs that are included in the Swish-e distribution:
spider.pl will be used for reading files from the web server; swish.cgi will provide the web search form
and display results.

As an example, we will index the Apache Web Server documentation, installed on the local computer at
http://localhost/apache_docs/index.html.

1. Make a Working Directory

Create a directory to store the Swish-e configuration and the Swish-e index.

 ~$ mkdir web_index
 ~$ cd web_index/
 ~/web_index$

2. Create a Swish-e Configuration file

 ~/web_index$ cat swish.conf
 # Swish-e config to index the Apache documentation
 #
 # Use spider.pl for indexing (location of spider.pl set at installation time)
 IndexDir spider.pl

 1 Dec 200528

2.6.11 Spidering and Searching with a Web form.

http://localhost/apache_docs/index.html.

 # Use spider.pl’s default configuration and specify the URL to spider
 SwishProgParameters default http://localhost/apache_docs/index.html

 # Allow extra searching by title, path
 Metanames swishtitle swishdocpath

 # Set StoreDescription for each parser
 # to display context with search results
 StoreDescription TXT* 10000
 StoreDescription HTML* <body> 10000

3. Generate the Index

Now, run Swish-e to create the index:

 ~/web_index$ swish-e -S prog -c swish.conf

 Indexing Data Source: "External-Program"
 Indexing "spider.pl"
 /usr/local/lib/swish-e/spider.pl: Reading parameters from ’default’

 Summary for: http://localhost/apache_docs/index.html
 Duplicates: 4,188 (349.0/sec)
 Off-site links: 276 (23.0/sec)
 Skipped: 1 (0.1/sec)
 Total Bytes: 2,090,125 (174177.1/sec)
 Total Docs: 147 (12.2/sec)
 Unique URLs: 149 (12.4/sec)
 Removing very common words...
 no words removed.
 Writing main index...
 Sorting words ...
 Sorting 7736 words alphabetically
 Writing header ...
 Writing index entries ...
 Writing word text: Complete
 Writing word hash: Complete
 Writing word data: Complete
 7736 unique words indexed.
 5 properties sorted.
 147 files indexed. 2090125 total bytes. 200783 total words.
 Elapsed time: 00:00:13 CPU time: 00:00:02
 Indexing done!

The above output is actually a mix of output from both Swish-e and spider.pl . spider.pl
reports the "Summary for: http://localhost/apache_docs/index.html".

29 1 Dec 2005

2.6.11 Spidering and Searching with a Web form.SWISH-Enhanced: INSTALL - Swish-e Installation Instructions

http://localhost/apache_docs/index.html
http://localhost/apache_docs/index.html
http://localhost/apache_docs/index.html

Also note that Swish-e knows to find spider.pl at
/usr/local/lib/swish-e/spider.pl . The script installation directory (called libex -
ecdir) is set at configure time. You can see your setting by running swish-e -h :

 ~/web_index$ swish-e -h | grep libexecdir
 Scripts and Modules at: (libexecdir) = /usr/local/lib/swish-e

This directory will be needed in the next step, when setting up the CGI script.

Finally, verify that the index can be searched from the command line:

 ~/web_index$ swish-e -w installing -m3
 # SWISH format: 2.4.0
 # Search words: installing
 # Removed stopwords:
 # Number of hits: 17
 # Search time: 0.018 seconds
 # Run time: 0.050 seconds
 1000 http://localhost/apache_docs/install.html "Compiling and Installing Apache" 17960
 718 http://localhost/apache_docs/install-tpf.html "Installing Apache on TPF" 25734
 680 http://localhost/apache_docs/windows.html "Using Apache with Microsoft Windows" 27165
 .

Now, try limit ing the search to the title:

 ~/web_index$ swish-e -w swishtitle=installing -m3
 # SWISH format: 2.3.5
 # Search words: swishtitle=installing
 # Removed stopwords:
 # Number of hits: 2
 # Search time: 0.018 seconds
 # Run time: 0.048 seconds
 1000 http://localhost/apache_docs/install-tpf.html "Installing Apache on TPF" 25734
 1000 http://localhost/apache_docs/install.html "Compiling and Installing Apache" 17960
 .

Note that the above can also be done using the -t option:

 ~/web_index$ swish-e -w installing -m3 -tH

4. Set up the CGI script

Swish-e does not include a web server. So, you must use your locally installed web server. Apache is
highly recommended, of course.

Locate your web server’s CGI directory. This may be a cgi-bin directory in your home directory
or a central cgi-bin directory set up by the web server administrator. Once this is located, copy the
swish.cgi script into the cgi-bin directory.

Where CGI scripts can be located depends completely on the web server that is being used and how it
has been configured. See your web server’s documentation or your site’s administrator for additional
information.

 1 Dec 200530

2.6.11 Spidering and Searching with a Web form.

http://localhost/apache_docs/install.html
http://localhost/apache_docs/install-tpf.html
http://localhost/apache_docs/windows.html
http://localhost/apache_docs/install-tpf.html
http://localhost/apache_docs/install.html

This example will use a site cgi-bin directory, located at /usr/lib/cgi-bin . Copy the
swish.cgi script into the cgi-bin directory. Again, we will need the location of the libex -
ecdir directory:

 ~/web_index$ swish-e -h | grep libexecdir
 Scripts and Modules at: (libexecdir) = /usr/local/lib/swish-e

 ~/web_index$ cd /usr/lib/cgi-bin
 /usr/lib/cgi-bin$ su
 Password:
 /usr/lib/cgi-bin# cp /usr/local/lib/swish-e/swish.cgi.

If your operating system supports symbolic links and your web server allows programs to be
symbolic links, then you may wish to create a link to the swish.cgi program, instead.

 /usr/lib/cgi-bin# ln -s /usr/local/lib/swish-e/swish.cgi

We need to tell the swish.cgi script where to look for the index created in the previous step. It’s
also recommended to enter the path to the swish-e binary. Otherwise, the swish.cgi script will
look for the binary in the PATH, and that may change when running under the CGI environment.

Here’s the configuration file:

 /usr/lib/cgi-bin# cat .swishcgi.conf
 return {
 title => ’Search Apache Documentation’,
 swish_binary => ’/usr/local/bin/swish-e’,
 swish_index => ’/home/moseley/web_index/index.swish-e’,
 }

Now, test the script from the command line (as a normal user!):

 /usr/lib/cgi-bin# exit
 exit

 /usr/lib/cgi-bin$./swish.cgi | head
 Content-Type: text/html; charset=ISO-8859-1

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Search Apache Documentation
 </title>
 </head>
 <body>

31 1 Dec 2005

2.6.11 Spidering and Searching with a Web form.SWISH-Enhanced: INSTALL - Swish-e Installation Instructions

Notice that the CGI script returns the HTTP header (Content-Type) and the body of the web page,
just like a well behaved CGI scrip should do.

Now, test using the web server (this step depends on the location of your cgi-bin directory). This
example uses the "GET" command that is part of the LWP Perl library, but any web browser can run
this test.

 /usr/lib/cgi-bin$ GET http://localhost/cgi-bin/swish.cgi | head
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Tranitional//EN">
 <html>
 <head>
 <title>
 Search Apache Documentation
 </title>
 </head>
 <body>
 <h2>

The script reports errors to stderr, so consult the web server’s error log if problems occur. The
message "Service currently unavailable", reported by running swish.cgi , typically indicates a
configuration error; the exact problem will be listed in the web server’s error log.

Detailed instructions on using the swish.cgi script and debugging tips can be found by running:

 $ perldoc swish.cgi

while in the cgi-bin directory where swish.cgi was copied.

The spider program spider.pl also has a large number of configuration options.

Documentation is also available in the directory $prefix/share/doc/swish-e or at
http://swish-e.org.

Note: Also check out the search.cgi script, found at the same location as the swish.cgi script.
This is more of a skeleton script, for those that want to create a custom search script.

Now you are ready to search.

2.7 Indexing Other Types of Documents - Filter ing
Swish-e can only index HTML, XML, and text documents. In order to index other documents, such as
PDF or MS Word documents, you must use a utility to convert or "filter" those documents.

How documents are filtered with Swish-e has changed over time. This has resulting in a bit of confusion.
It’s also a somewhat complex process, as different programs need to communicate with each other.

 1 Dec 200532

2.7 Indexing Other Types of Documents - Filtering

http://localhost/cgi-bin/swish.cgi
http://swish-e.org./

You may wish to read the Swish-e FAQ question on filtering, before continuing here. How do I filter
documents?

2.7.1 Filter ing Overview

There are two ways to filter documents with Swish-e. Both are described in the SWISH-CONFIG man
page. They use the File Filter directive and the SWISH::Filter Perl module.

The File Filter directive is a general-purpose method of filtering. It allows running of an external
program for each document processed (based on file extension), and requires one or more external
programs. These programs open an input file, convert as needed, and write their output to standard output.

Previous versions of Swish-e (before 2.4.0) used a collection of filter programs for converting files such as
PDF or MS Word documents. The external programs call other program to do the work of filtering (e.g.
pdftotext to extract the contents from PDF files). Although these filter programs are still included with the
Swish-e distribution as examples, it is recommended to use the SWISH::Filter method, instead.

One disadvantage of using File Filter is that the filter program is run once for every document that
needs to be filtered. This can slow down the indexing process substantially .

The SWISH::Filter Perl module works very much like the old system and uses the same helper
programs. Convieniently, however, it provides a single interface for filtering all types of documents. The
primary advantage of SWISH::Filter is that it is built into the program used for spidering web sites
(spider.pl), so all that’s required is installing the filter programs that do the actual work of filtering (e.g.
catdoc, xpdf). (The Windows binary includes some of the filter programs.)

But, Swish-e will not use SWISH::Filter by default when using the file system method of indexing.
To use SWISH::Filter when indexing by file system method (-S fs), you can use a File Filter
directive with the swish_filter.pl filter (which is just a program that uses SWISH::Filter) or
use the -S prog method of indexing and use the DirTree.pl program for fetching documents.

DirTree.pl is included with the Swish-e distribution and is designed to work with SWISH::Filter .
Using DirTree.pl will likely be a faster way to index, since the SWISH::Filter set of modules does not
need to be compiled for every document that needs to be filtered.

See the contents of swish_filter.pl and DirTree.pl for specifics on their use.

2.7.2 Filter ing Examples

The File Filter directive can be used in your config file to convert documents, based on their exten-
sions. This is the old way of filtering, but provides an easy way to add filters to Swish-e.

For example:

 FileFilter .pdf pdftotext "’%p’ -"
 IndexContents TXT* .pdf

33 1 Dec 2005

2.7.1 Filtering OverviewSWISH-Enhanced: INSTALL - Swish-e Installation Instructions

will cause all .pdf files to be filtered through the pdftotext program (part of the Xpdf package) and to
parse the resulting output (from pdftotext) with the text ("TXT") parser.

The other way to filter documents is to use a -S prog prograam and convert the documents before
passing them onto Swish-e.

For example, spider.pl makes use of the SWISH::Filter" Perl module, included with the Swish-e
distribution. SWISH::Filter is passed a document and the document’s content type; it looks for
modules and utilities to convert the document into one of the types that Swish-e can index.

Swish-e comes ready to index PDF, MS Word, MP3 ID3 tags, and MS Excel file types. But these filters
need extra modules or tools to do the actual conversion.

For example, the Swish-e distribution includes a module called SWISH::Filter::Pdf2HTML that
uses the pdftotext and pdfinfo utilities provided by the Xpdf package.

This means that if you are using spider.pl to spider your web site and you wish to index PDF docu-
ments, all that is needed is to install the Xpdf package and Swish-e (with the help of spider.pl) will begin
indexing your PDF files.

Ok, so what does all that mean? For a very simple site, you should be able to run this:

 $ /usr/local/lib/swish-e/spider.pl default http://localhost/ | swish-e -S prog -i stdin

which is running the spider with default spider settings, indexing the Web server on localhost, and piping
its output into Swish-e (using the default indexing settings). Documents will be filtered automatically, if
you have the required helper applications installed.

Most people will not want to just use the default settings (for one thing, the spider will take a while
because its default is to delay a few seconds between every request). So, read the documentation for
spider.pl , to learn how to use a spider config file. Also read SWISH-CONFIG to learn about what
configuration options can be used with Swish-e.

The SWISH::Filter documentation provides more details on filtering and hints for debugging prob-
lems when filtering.

2.8 Document Info
$Id: INSTALL.pod,v 1.40 2004/10/04 22:49:33 whmoseley Exp $

.

 1 Dec 200534

2.8 Document Info

http://localhost/

3 CHANGES - List of revisions

35 1 Dec 2005

3 CHANGES - List of revisionsSWISH-Enhanced: CHANGES - List of revisions

3.1 Revision History
This document contains list of bug fixes and feature additions to Swish-e.

3.1.1 Version 2.4.3 December 9, 2004

Improved error messsages when using incremental indexing

There was a bit of confusion on how to use incremental indexing (still experimental) so added better
logic for error messages.

Also fixed a logic error when setting the incremental update mode. Caught by Paul Loner.

3.1.2 Version 2.4.3-pr1 - Wed Dec 1 09:52:50 PST 2004

"Fixed" libxml2’s change in UTF8Toisolat1() return value

Bernhard Weisshuhn supplied a patch to parser.c for checking the return value of UTF8Toiso -
lat 1(). Seems that libxml2 now returns the number of characters converted instead of zero for
success.

 http://bugzilla.gnome.org/show_bug.cgi?id=153937

Added swish-config and pkg-config

Swish now provides a swish-config script and config file for the pkg-config utility. These tools help
when building programs that link with the swish-e library.

The SWISH::API Makefile.PL program uses swish-config to locate the installation directory of
swish-e. This should make building SWISH::API easier when swish-e is installed in a non-standard
location.

Fixed rank bias in merge

Peter van Dijk noticed that MetaNamesRank settings were not being copied to the output index when
merging.

Added SwishFuzzy function

SwishFuzzy function (SWISH::API::Fuzzy) lets you stem a word without first searching. This might
be helpful for playing with queries prior to the search.

Fixed translate character table

 1 Dec 200536

3.1 Revision History

http://bugzilla.gnome.org/show_bug.cgi?id=153937

Michael Levy found an error in the table used to translate 8859-1 to ascii7. Luckily, it was an upper
case translation and the table is only used on lower case characters.

MetaNamesRank documentation

Changed the ’not yet implemented’ caveat to ’implemented but experimental’.

Added Continuation option to config processing

You can now use continuation lines in the config file:

 IgnoreWords \
 the \
 am \
 is \
 are \
 was

There may not be any characters following the backslash.

Fixed Buzzwords (and other word lists entered in the config)

Words entered in config were not converted to lower case before storing in the index.

Fixed metaname mapping problem in Merge

Peter Karman found an error when merging indexes where the source indexes had the same
metanames, but listed in a different order in their config files. Words would then be indexed under
the wrong metaID number in the output index.

SWISH::Filters and spider.pl updates

The web spider spider.pl was updated to work better with SWISH::Filter by default and also make it
easier to use the spider default along with a spider config file. See spider.pl for details.

SWISH::Filter was updated. The way filters are created has changed. If you created your own filters
you will need to update them. Take a look at SWISH::Filter and the filters included in the distribu-
tion.

Updates to Documentation

Richard Morin submitted formatting and punctuation dates to the README and INSTALL docs.

Added -R option to support IDF word weighting in ranking. (karman)

Added Inverse Document Frequency calculation to the getrank() routine. This will allow the rela-
tive frequency of a word in relationship to other words in the query to impact the ranking of docu-
ments.

37 1 Dec 2005

3.1.2 Version 2.4.3-pr1 - Wed Dec 1 09:52:50 PST 2004SWISH-Enhanced: CHANGES - List of revisions

Example: if ’foo’ is present twice as often as ’bar’ in the collection as a whole, a search for ’foo bar’
will weight documents with ’bar’ more heavily (i.e., higher rank) than those with ’foo’.

The impact is greatest when OR’ing words in a query rather than AND’ing them (which is the
default).

Also added Rank discussion to the FAQ.

Updates to the example scripts

Updated PhraseHighlight.pm as suggested by Bill Schell for an optimization when all words in a
document are highlighted.

Updated search.cgi and PhraseHighlight.pm to use the internal stemmers via the SWISH::API
module as suggested by Jonas Wolf.

Leak when using C library

David Windmueller found a memory leak when calling multiple searches on a swish handle. The
problem was swish loading the pre-sorted property index on every search, even after the table had
been loaded into memory.

Swish.cgi now kills swish-e on time out

The example script swish.cgi uses an alarm (on platforms that support alarm) to abort processing
after some number of seconds, but it was not killing the child process, swish-e. Bill Schell submitted
a patch to kill the child when the alarm triggers.

The template search.tt was renamed to swish.tt

The template was renamed because it’s used by swish.cgi, not by search.cgi, which was confusing.

Updates to the search.cgi

The example script search.cgi was updated to work better with mod_perl and to use external template
files and style sheets.

New MS Word Filter

James Job provided the SWISH::Filter::Doc2html filter that uses the wvWare (http://wvware.source-
forge.net/) program for filtering MS Word documents. If both catdoc and wvWare are installed then
wvWare will be used.

wvWare is reported to do a good job at converting MS Word docs to HTML. In a few tests it did
work well, but other cases it failed to generate correct output. It was also much, much slower than
catdoc. I tested with wvWare 0.7.3 on Debian Linux. Testing with both is recommended.

 1 Dec 200538

3.1.2 Version 2.4.3-pr1 - Wed Dec 1 09:52:50 PST 2004

Change in way symbolic links are followed

John-Marc Chandonia pointed out that if a symlink is skipped by FileRules, then the actual file/direc-
tory is marked as "already seen" and cannot be indexed by other links or directly.

Now, files and directories are not marked "already seen" until after passing FileRules (i.e after a file
is actually indexed or a directory is processed).

Could not set SwishSetSort() more than once

David Windmueller found a problem when trying to set the sort order more than once on an existing
search object. Memory was not correctly reset after clearing the previous sort values.

Access MetaNames and PropertyNames from API

Patch provided by Jamie Herre to access the MetaNames and PropertyNames via the C API and to
test via the testlib program. Swish::API also updated to access this data.

SwishResultPropertyULong() bug fixed

David Windmueller reported that SwishRe sult Prop er tyU Long () was returning
ULONG_MAX on all calls. This was fixed.

Null written to wrong location in file.c

Bill Schell with the help of valgrind found a null written past the end of a buffer in file.c in the code
that supports the old parsers. This resulted in a segfault while indexing a large set of XML docu-
ments.

Fixed problem when indexing very large files

Steve Harris reported a problem when indexing a very large document that caused an integer over-
flow. José Ruiz updated to used unsigned integers.

Bump word position on block tags with HTML2 parser

Peter Karman pointed out the the libxml2 HTML parser was allowing phrase matches across block
level html elements. Swish now bumps the word position on these elements.

3.1.3 Version 2.4.2 - March 09, 2004

UseStemming didn’t take no for an answer

UseStemming was coded as an alias for FuzzyIndexingMode when Snowball was compiled in (the
default), but "no" doesn’t always mean no when the Norwegian stemmer is available.

Fixed problem build ing incremental version

39 1 Dec 2005

3.1.3 Version 2.4.2 - March 09, 2004SWISH-Enhanced: CHANGES - List of revisions

Fixed compile problem with building incremental indexing mode. This is an experimental option
with swish-e to allow adding files to an index. See configure --help for build option. Incremental
indexes are not compatible with standard indexes.

Updated build instructions in INSTALL

Added a few comments about use of CPPFLAGS and LDFLAGS.

Updated the index_hypermail.pl

Updated to work with latest version of hypermail (pre-2.1.9).

Time zone in ResultPropertyStr ()

Format string for generating date did not include the time zone in location. Add strftime format string
to config.h

Undefined and Blank Properties and (NULL)

Fixed a few problems with printing properties:

1) Using -p and -x showed different results if a bad property value was given:

 $ swish-e -w not dkdk -p badname -H0
 err: Unknown Display property name "badname"
 .
 $ swish-e -w not dkdk -x ’<badname>\n’ -H0
 (NULL)

Now both return an error.

2) Fixed bug where using a "fmt" string with -x output generated (bad) output if the result did not
have the specified property.

 $ swish-e -w not dkdk -x ’<somedate>\n’ -H0 # undefined value

 $ swish-e -w not dkdk -x ’<somedate fmt="%Y %B %d">\n’ -H0
 %Y %B 1075353525

Now nothing is printed if the property does not exist.

3) Updated SWISH::API to croak() on invalid property names, and to return undefined values for
missing properties.

4) Updated swish.cgi and search.cgi to not generate warnings on undefined values return as proper-
ties. Note that swish.cgi will now die on undefined properties. Previously would just display
(NULL).

 1 Dec 200540

3.1.3 Version 2.4.2 - March 09, 2004

Fixed segfault when generating warnings while parsing

Parser.c was incorrectly calling warning() incorrectly. And -Wall was not catching this!

Added check for internal property names.

Parser was not checking for use of Swish-e reserved property names.

 <swishrank>foo</swishrank>

This will now generate a warning.

3.1.4 Version 2.4.1 - December 17, 2003

Added new example CGI script

search.cgi is a new skeleton CGI script that uses SWISH::API for searching. It is installed in the
same location as swish.cgi.

Add Fuzzy access to C and Perl inter faces

Added a number of functions to the C API (and SWISH::API) to access the stemmer used when
indexing a given index.

Commas in numbers

Added commas to summary display at end of indexing.

Insert whitespace between tags

Parser.c was updated to flush the text buffer before and after every (non-inline HTML) tag.

The problem was that:

 foo<tag>bar</tag>baz

would index as a single word "foobarbaz".

DirTree.pl

DirTree.pl was updated to work with SWISH::Filter and to work on Windows. DirTree.pl is a
program to fetch files from the file system and works with the -S prog input method.

Problem with --enable-incremental option

41 1 Dec 2005

3.1.4 Version 2.4.1 - December 17, 2003SWISH-Enhanced: CHANGES - List of revisions

Fixed configure script to build incremental option. Note that this is still experimental. But testers are
welcome.

headers.c bug

Mark Fletcher with the help of valgrind found a bug in headers.c function SwishIndexHeaderNames
used by the C API.

Clarify documentation regarding search order

At the prompting of Doralyn Rossmann updated SEARCH.pod to try and make the explanation of
searching clearer, and to fix an error in the description of nested searches.

3.1.5 Version 2.4.0 - October 27, 2003

Note: Differ ent Index Format

Swish-e version 2.4.0 has a different index file format from previous versions of Swish-e. Upgrading
will require reindexing -- version 2.4.0 cannot read indexes created with previous versions.

3.1.6 Version 2.4.0 (Release Candidate 4) September 26, 2003

robots.txt not closed correctly

When using -S http method robots.txt was not closed and that caused the (last) .contents file to not be
unlinked under Windows. Windows seems to think filenames are related to files.

SWISH::Filter and locating programs on Windows

SWISH::Filter now scans $libex ecdir in addition to the PATH for programs (such at catdoc and
pdftotext), and also checks for programs by adding the extensions ".exe" and ".bat" to the program
name.

Install sample templates

The sample templates included with swish.cgi are now installed in $pkgdatadir (typically
/usr/local/share/swish-e).

3.1.7 Version 2.4.0 (Release Candidate 3) September 11, 2003

Fix parser bug meta=(foo*)

Fixed bug in query parser caused in rc2’s (pr2) attempt to catch wildcards errors.

 1 Dec 200542

3.1.5 Version 2.4.0 - October 27, 2003

3.1.8 Version 2.4.0 (Release Candidate 2) September 10, 2003

Indexing HTML title

Fixed a problem when these were used in combination:

 MetaNames swishtitle
 MetaNameAlias swishtitle title

That failed to correctly reset the metaname stack and indexed text under the wrong metaID.

Single Wild cards

Due to the way the query parser "works" a search of

 "foo *"

would result in a search of "foo*". Now that results in:

 err: Single wildcard not allowed as word

Fixed search parsing bug

Brad Miele reported that the word "andes" was not being found. It was being stemmed to "and" when
was then considered an operator. [moseley]

Add new directive PropertyNamesSortKeyLength

PropertyNamesSortKeyLength sets the sort key length to use when sorting string properties. The
default is 100 characters. There was a hard-coded 100 char limit before, but that was a problem
where people were not building from source (Windows). The value of this is questionable -- it’s
intended to limit how much memory is used when sorting while indexing and searching. [moseley]

Fixed sorting issues with multi ple indexes and reverse sorting

Reworked much of the sorting code. Still to do is setting the character sort order. [moseley]

Fixed minor memory leak

Fixed leak of not releasing memory of index file name and swish_handle destroy, and fixed Swish-
StemWord to default to the Stemmer_en. [moseley]

Fixed libtest.c example program that was not cleaning up memory after an error condition.

Replaced Swish-e’s Porter Stemmer with Snowball

43 1 Dec 2005

3.1.8 Version 2.4.0 (Release Candidate 2) September 10, 2003SWISH-Enhanced: CHANGES - List of revisions

Swish-e now has support for Snowball stemmers (http://snowball.tartarus.org/). The stemmers are
enabled for an index with FuzzyIndexingMode Stemming_* where "*" can be:

 de, dk, en1, en2, es, fi, fr, it, nl, no, pt, ru, se

In addition, UseStemming yes or FuzzyIndexingMode Stemming_en will use the old stemmer.

3.1.9 Version 2.4.0 (Release Candidate 1) May 21, 2003

Security Fix: swish.cgi

The swish.cgi script was not correctly escaping HTML when searching by the right combination of
metanames and highlighting module. This could lead to cross-site scripting if indexing un-trusted
documents. [moseley]

Added Support for build ing a Debian Package

To build as a .deb unpack the distribution and chdir then run

 $ fakeroot debian/build binary

Then install the generated .deb file with dpkg -i

Use SWISH::Filter by default with spider.pl

spider.pl is installed in the libexecdir directory as well as the SWISH::Filter modules. PDF, MS
Word, MP3, and XML documents will be indexed automatically if the required helper applications
(e.g. catdoc, pdftotext) or scripts (e.g. MP3::Tag) are installed.

Swish also knows about libexecdir, so you you specify a relative path with -S prog swish-e will look
for the program in libexecdir. This is mostly for spider.pl so indexing only requires:

 IndexDir spider.pl
 SwishProgParameters default http://localhost/index.html

And swish-e will find spider.pl and SWISH::Filter will be used to convert docs.

Fixed Document-Type bug

Document-Type was not being reset after set input from a -S prog program causing the wrong parser
to be used. [moseley]

New Directive: PropertyNamesNoStripChars

 1 Dec 200544

3.1.9 Version 2.4.0 (Release Candidate 1) May 21, 2003

http://localhost/index.html

Swish replaces all series of low ASCII chars with a single space character. This option instructs
swish to store all chars in the property. [moseley]

Change HTTP access defaults

Defaults used with -S http access method were changed.

Delay was reduced from one minute between start of each request to five seconds between requests.

MaxDepth was changed from five to zero, meaning there is no limit to depth indexed by default.
[moseley]

swishspider location and SpiderDirectory

The swishspider program is now installed in $prefix/lib/swish-e by default. This can be changed by
the --libexecdir option to configure.

The SpiderDirectory option now defaults to the value of libexecdir instead of the current directory.
[moseley]

Added libtool and automake support

Replaces the build system with Autotools. Now builds libswish-e as a shared library on systems that
support shared libraries. The swish-e binary links against this shared library. Can also build outside
the source tree on platforms with GNU make. [moseley]

Updates to installation

Running "make install" now installs additional files. Files include the swish-e binary, the libswish-e
search library, swish-e.h header, documentation files, the swishspider program, and Perl modules
used for the example swish.cgi search script. Directories will be created if they do not already exist.
Installation directories can be specified at build time.

Fixed bug when searching at end of inverted index

Swish was not correctly detecting the end of the inverted index when searching a wildcard word that
was past the last word in the index. Caught by Frank Heasley. [moseley]

Increase sort key length from 50 to 100 characters

The setting MAX_SORT_STRING_LEN in src/config.h sets the max length used when sorting in
swish-e. You may reduce this number to save memory while sorting, or increase it if you have very
long properties to sort.

Remove " entity from -p output

The -p option to print properties was escaping double quotes in properties with the " entity. -x
does not do that, so inconsistent. -p no longer converts double quotes. The user should pick a good
delimiter with -d or preferably use the -x method for generating output.

45 1 Dec 2005

3.1.9 Version 2.4.0 (Release Candidate 1) May 21, 2003SWISH-Enhanced: CHANGES - List of revisions

XML parser and Windows

The XML parser was being passed the incorrect buffer length when used on Windows platform
causing the parser to abort with an error.

Version Numbering

SWISH-E versions starting with 2.3.4 use kernel version numbering. Versions are in the form:
Major.Minor.Build. Odd minor versions are development. Even minor versions are releases. 2.3.4
would be a development version. 2.4.0 would be a release version. 2.3.20 would be the 20th build of
2.3.

Added RPM support

RPMs can be built with:

 ./configure
 make dist

Copy the resulting tarball to RPM’s SOURCES directory and then run as a superuser:

 rpmbuild -ba rpm/swish-e.spec

You should have swish-e packages in your RPMS/<arch> directory. [augur]

Changed default perl binary location

Most perl scripts provided with SWISH-E now use /usr/bin/perl by default. Note that some scripts are
generated at build time, so those will look in the path for the location of the perl binary.

New Feature: MetaNamesRank

MetaNamesRank can be used to adjust the ranking for words based on the word’s MetaName.

New Swish Library API and Perl Module

The Swish-e C library interface was rewritten to provide better memory management and better sepa-
ration of data. Most indexing related code has been removed from the library. A new header file is
provided for the API: swish-e.h.

The Perl module SWISHE was replaced with the SWISH::API module in the Swish-e distribution.

Previous versions of the SWISHE module will not work with this version of Swish-e.

If you are using the SWISHE module from a previous version of Swish then you must either rewrite
your code to use the new SWISH::API module (highly recommended) or use the replacement
SWISHE module. The replacement SWISHE module is a thin interface to the SWISH::API module.
It can be downloaded from

 1 Dec 200546

3.1.9 Version 2.4.0 (Release Candidate 1) May 21, 2003

 http://swish-e.org/Download/old/SWISHE-0.03.tar.gz

NoContents not working with libxml2 parser

Corrected problem when using NoContents with binary files and the HTML2 parser.

Trying to index image file names with:

 IndexOnly .gif .jpeg
 NoContents .gif .jpeg

failed to index the path names because the default parser (HTML2 when libxml2 is linked with
swish-e) was not finding any text in the binary files. [moseley]

Updates to swish.cgi

The example/swish.cgi script can now use the SWISH::API module for searching an index.
Combined with mod_perl this module can improve search performance considerably.

The Perl modules used with the swish.cgi script have all been moved into the SWISH::* namespace.
Hence, files in the modules directory were moved into the modules::SWISH directory.

3.1.10 Version 2.2.3 - December 11, 2002

Multiple -L options were ORing instead of ANDing. Catch by Patrick Mouret. [moseley]

3.1.11 Version 2.2.2 - November 14, 2002

Pass non- text/* files onto indexing code IF there is a FileFilter associated with the *extension* of the
URL. Fixes the problem of not being able to index, say, pdf files by using the FileFilter configuation
option.

Fixed bug where nulls were stripped when using FileFilter with -S prog. Catch by Greg Fenton. [moseley]

3.1.12 Version 2.2.1 - September 26, 2002

NoContents with -S prog

Failed to use the correct default parser when using the No-Contents header and libxml2 linked in.
[moseley]

Add tests for IRIX and sparc machines

8-byte alignment in mem_zones is is required for these machine [moseley]

47 1 Dec 2005

3.1.10 Version 2.2.3 - December 11, 2002SWISH-Enhanced: CHANGES - List of revisions

http://swish-e.org/Download/old/SWISHE-0.03.tar.gz

Fixed code when removing files

Was not correctly removing words from index when parser aborted [jmruiz]

Merge segfault

Fixed segfault caused by trying to print null dates while merging duplicate files. [moseley]

Documentation patches

Spelling corrections to the SWISH-CONFIG pod page [Steve Eckert]

Configure corrections

Fixed a zlib test error that used "==" in a test [Steve Eckert]

Updates to VMS build

The VMS build was updated [Jean-François PIÉRONNE]

MANI FEST corrections

Added missing filters and vms build file into MANI FEST [moseley]

3.1.13 Version 2.2 - September 18, 2002

Default parser

Swish-e will now use the HTML2 (libxml2) parser by default if libxml2 is installed and DefaultCon-
tents or IndexContents is not used.

Selecting parsers

Allow HTML*, XML*, and TXT* to automatically select the libxml2-based parsers if libxml2 is
linked with Swish-e, otherwise fallback to the built-in parsers.

SwishSpider and Filters

Filters (FileFilter directive) did not work correctly when spidering with the -S http method. A new
filter system was developed and now filtering of documents (e.g. pdf->html or MSWord->text) is
handled by the src/SwishSpider program.

When indexing with the -S http method only documents of content-type "text/*" are indexed. Other
documents must be converted to text by using the filter system.

Buffer overflow in xml.c

 1 Dec 200548

3.1.13 Version 2.2 - September 18, 2002

Fixed bug in xml.c reported by Rodney Barnett when very long words were indexed. [moseley]

configure script updates

Updated from _WIN32 checks to feature checks using autoconf [moseley, norris]

updates to run on Alpha (Linux 2.4 (Debian 3.0))

Fixed a cast error when calling zlib, and the calls to read/write a packed longs to disk. [jmruiz,
moseley]

COALESCE_BUFFER_MAX_SIZE

Some people were seeing the following error:

 err: Buffer too short in coalesce_word_locations.
 Increase COALESCE_BUFFER_MAX_SIZE in config.h and rebuild.

This was due to indexing binary data or files with very large number of words. The best solution is to
not index binary data or files with a very large number of words.

Swish-e will now automatically reallocate the buffer as needed. [jmruiz]

3.1.14 Version 2.2rc1 - August 29, 2002

Many large changes were made internally in the code, some for performance reasons, some for feature
changes and additions, and some to prepare for new features in later versions of Swish-e.

Documentation!

Documentation is now included in the source distribution as .pod (perldoc) files, and as HTML files.
In addition, the distribution can now generate PDF, postscript, and unix man pages from the source
.pod files. See README for more information.

Indexing and searching speed

The indexing process has been imporoved. Depending on a number of factors, you may see a signifi-
cant improvement in indexing speed, especially if upgrading from version 1.x.

Searching speed has also been improved. Properties are not loaded until results are displayed, and
properties are pre-sorted during indexing to speed up sorting results by properties while searching.

Properties are written to a sepearte file

Swish-e now stores document properties in a separate file. This means there are now two files that
make up a Swish-e index. The default files are index.swish-e and index.swish-e.prop .

49 1 Dec 2005

3.1.14 Version 2.2rc1 - August 29, 2002SWISH-Enhanced: CHANGES - List of revisions

This change frees memory while indexing, allowing larger collections to be indexed in memory.

Inter nal data stored as Properties

Pre 2.2 some internal data was stored in fixed locations within the index, namely the file name, file
size, and title. 2.2 introduced new internal data such as the last modified date, and document
summaries. This data is considered meta data since it is data about a document.

Instead of adding new data to the internal structure of the index file, it was decided to use the
MetaNames and PropertyNames feature of Swish-e to store this meta information. This allows for
new meta data to be added at a later time (e.g. Content-type), and provides an easy and customizable
way to print results with the -p switch and the new -x switch. In addition, search results can now be
sorted and limited by properties.

For example, to sort by the rank and title:

 swish-e -w foo -s swishrank desc swishtitle asc

The header display has been slightly reorganized.

If you are parsing output headers in a program then you may need to adjust your code. There’s a new
switch <-H> to control the level of header output when searching.

Results are now combined when searching more than one index.

Swish-e now merges (and sorts) the results from multiple indexes when using -f to specify more
than one index. This change effects the way maxhits (-m) works. Here’s a summary of the way it
works for the different versions.

 1.3.2 - MaxHits returns first N results starting from the first index.
 e.g. maxhits=20; 15 hits Index1, 40 hits Index2
 All 15 from Index1 plus first five from Index2 = 20 hits.

 2.0.0 - MaxHits returns first N results from each index.
 e.g. Maxhits=20; 15 hits Index1, 40 hits Index2
 All 15 from Index1 plus 15 from Index2.

 2.2.0 - Results are merged and first N results are returned.
 e.g. Maxhits=20; 15 hits Index1, 40 hits Index2
 Results are merged from each index and sorted
 (rank is the default sort) and only the first
 20 are returned.

New prog document source indexing method

 1 Dec 200550

3.1.14 Version 2.2rc1 - August 29, 2002

You can now use -S prog to use an external program to supply documents to Swish-e. This external
program can be used to spider web servers, index databases, or to convert any type of document into
html, xml, or text, so it can be indexed by Swish-e. Examples are given in the prog-bin directory.

The indexing parser was rewrit ten to be more logical.

TranslateCharacters now is done before WordCharacters is checked. For example,

 WordCharacters abcdefghijklmnopqrstuvwxyz
 TranslateCharacters ñ n

Now El Niño will be indexed as El Nino (el and nino), even though ñ is not listed in WordCharac-
ters.

Previously, stopwords were checked after stemming and soundex conversions, as well as most of the
other word checks (WordCharacters, min/max length and so on). This meant that the stopword list
probably didn’t work as expected when using stemming.

The search parser was rewrit ten to be more logical

The search parser was rewritten to correct a number of logic errors. Swish-e did not differentiate
between meta names, Swish-e operators and search words when parsing the query. This meant, for
example, that metanames might be broken up by the WordCharacters setting, and that they could be
stemmed.

Swish-e operator characters "*()= can now be searched by escaping with a backslash. For example:

 ./swish-e -w ’this\=odd\)word’

will end up searching for the word this=odd)word . To search for a backslash character preceed it
with a backslash.

Currently, searching for:

 ./swish-e -w ’this*’

is the same as a wildcard search. This may be fixed in the future.

Searching for buzzwords with those characters will still require backslashing. This also may change
to allow some un-escaped operator characters, but some will always need to be escaped (e.g. the
double-quote phrase character).

Quotes and Backslash escapes in strings

A bug was fixed in the parse_line() function (in string.c) where backslashes were not escaping
the next character. parse_line() is used to parse a string of text into tokens (words). Normally
splitting is done at whitespace. You may use quotes (single or double) to define a string (that might

51 1 Dec 2005

3.1.14 Version 2.2rc1 - August 29, 2002SWISH-Enhanced: CHANGES - List of revisions

include whitespace) as a single parameter. The backslash can also be used to escape the following
character when *within* quotes (e.g. to escape an embedded quote character).

 ReplaceRules append "foo bar" <- define "foo bar" as a single word
 ReplaceRules append "foo\"bar" <- escape the quotes
 ReplaceRules append ’foo"bar’ <- same thing

Example user.config file removed.

Previous versions of Swish-e included a configuration file called user.config which contained
examples of all directives. This has been replaced by a series of example configuration files located
in the conf directory. The configuration directives are now described in SWISH-CONFIG.

Ports to Win32 and VMS

David Norris has included the files required to build Swish-e under Windows. See src/win32 . A
self-extracting Windows version is available from the Download page of the swish-e.org web site.

Jean-François Piéronne has provided the files required to build Swish-e under OpenVMS. See
src/vms for more information.

String properties are concatenated

Multiple string properties of the same name in a document are now concatenated into one property.
A space character is added between the strings if needed. A warning will be generated if multiple
numeric or date properties are found in the same document, and the additional properties will be
ignored.

Previously, properties of the same name were added to the index, but could not be retrieved.

To do: remove the next pointer, and allow user-defined character to place between properties.

regex type added to ReplaceRules

A more general purpose pattern replacement syntax.

New Parsers

Swish-e’s XML parser was replaced with James Clark’s expat XML parser library.

Swish-e can now use Daniel Veillard’s libxml2 library for parsing HTML and XML. This requires
installation of the library before building Swish-e. See the INSTALL document for information.
libxml2 is not required, but is strongly recommended for parsing HTML over Swish-e’s internal
HTML parser, and provides more features for both HTML and XML parsing.

Support for zlib

 1 Dec 200552

3.1.14 Version 2.2rc1 - August 29, 2002

Swish-e can be compiled with zlib. This is useful for compressing large properties. Building Swish-e
with zlib is stronly recommended if you use its Store Descrip tion feature.

LST type of document no longer supported

LST allowed indexing of files that contained multiple documents.

Temporary files

To improve security Swish-e now uses the mkstemp(3) function to create temporary files. Tempo-
rary files are used while indexing only. This may result in some portability issues, but the security
issues were overriding.

(Currently this does not apply to the -S http indexing method.)

mkstemp opens the temporary with O_EXCL|O_CREAT flags. This prevents overwriting existing
files. In addition, the name of the file created is a lot harder to guess by attackers. The temporary file
is created with only owner permissions.

Please report any portability issues on the Swish-e discussion list.

Temporary file locations

Swish-e now uses the environment variables TMPDIR, TMP, and TEMP (in that order) to decide
where to write temporary files. The configuration setting of TmpDir will be used if none of the envi-
ronment variables are set. Swish-e uses the current directory otherwise; there is no default temporary
directory.

Since the environment variables override the configuration settings, a warning will be issued if you
set TmpDir in the configuration file and there’s also an environment variable set.

Temporary files begin with the letters "swtmp" (which can be changed in config.h), followed by two
or more letters that indicate the type of temporary file, and some random characters to complete the
file name. If indexing is aborted for some reason you may find these temporary files left behind.

New Fuzzy indexing method Double Metaphone

Based on Lawrence Philips’ Metaphone algorithm, add two new methods of creating a fuzzy index
(in addition to Stemming and Soundex).

Changes to Configuration File Directives. Please see SWISH-CONFIG for more info.

New directives: IndexContents and DefaultContents

The IndexContents directive assigns internal Swish-e document parsers to files based on their file
type. The DefaultContents directive assigns a parser to be used on file that are not assigned a parser
with IndexContents.

53 1 Dec 2005

3.1.14 Version 2.2rc1 - August 29, 2002SWISH-Enhanced: CHANGES - List of revisions

New directive: UndefinedMetaTags [error|ignore|index|auto]

This describes what to do when a meta tag is found in a document that is not listed in the MetaNames
directive.

New directive: IgnoreTags

Will ignore text with the listed tags.

New directive: SwishProgParameters *list of words*

Passes words listed to the external Swish-e program when running with -S prog document source
method.

New directive: ConvertHTM LEnti ties [yes|no]

Controls parsing and conversion of HTML entities.

New directive: DontBumpPositionOnMetaTags

The word position is now bumped when a new metatag is found -- this is to prevent phrases from
matching across meta tags. This directive will disable this behavior for the listed tags.

This directive works for HTML and XML documents.

Changed directive: IndexComments

This has been changed such that comments are not indexed by default.

Changed directive: IgnoreWords

The builtin list of stopwords has been removed. Use of the SwishDefault word will generate a
warning, and no stop words will be used. You must now specify a list of stopwords, or specify a file
of stopwords.

A sample file stop words .txt has been included in the conf/stopwords directory of the distribu-
tion, and can be used by the directive:

 IgnoreWords File: /path/to/stopwords.txt

Change of the default for IgnoreTotalWordCountWhenRanking

The default is now "yes".

New directive: Buzzwords

Buzzwords are words that should be indexed as-is, without checking for stopwords, word length,
WordCharacters, or any other of the word limit ing features. This allows indexing of things like C++
when "+" is not listed in WordCharacters.

 1 Dec 200554

3.1.14 Version 2.2rc1 - August 29, 2002

Currenly, IgnoreFirstChar and IgnoreLastChar will be stripped before processing Buzzwords.

In the future we may use separate IgnoreFirst/Last settings for buzzwords since, for example, you
may wish to index all + within Swish-e words, but strip + from the start/end of Swish-e words, but
not from the buzzword C++.

New directives: PropertyNamesNumeric PropertyNamesDate

Before Swish-e 2.2 all user-defined document properties were stored in the index as strings. Proper-
tyNamesNumeric and PropertyNamesDate tell it that a property should be stored in binary format.
This allows for correct sorting of numeric properties.

Currenly, only integers can be stored, such as a unix timestamp. (Swish-e uses strtoul to convert
the number to an unsigned long internally.)

PropertyNamesDate only indicates to Swish-e that a number is a unix timestamp, and to display the
property as a formatted time when printing results. Swish does not currently parse date strings; you
must provide a unix timestamp.

New directive: MetaNameAlias

You may now create alias names for MetaNames. This allow you to map or group multiple names to
the same MetaName.

New directive: PropertyNameAlias

Creates aliases for a PropertyName.

New directive: PropertyNamesMaxLength

Sets the max length of a text property.

New directive: HTMLLinksMetaName

Defines a metaname to use for indexing href links in HTML documents. Available only with libxml2
parser.

New directive: ImageLinksMetaName

Defines a metaname to use for indexing src links in tags. Allow you to search image path-
names within HTML pages. Available only with libxml2 parser.

New directive: IndexAlt TagMetaName

Allows indexing of image ALT tags. Only available when using the libxml2 parser.

New directive: AbsoluteLinks

55 1 Dec 2005

3.1.14 Version 2.2rc1 - August 29, 2002SWISH-Enhanced: CHANGES - List of revisions

Attempts to convert relative links indexed with HTMLLinksMetaName and ImageLinksMetaName
to absolute links. Available only with libxml2 parser.

New directive: ExtractPath

Allows you to use a regular expression to extract out part of the path of each file and index it with a
meta name. For example, this allows searches to be limited to parts of your file tree.

New directive: FileMatch

FileMatch is similar to FileRules. Where FileRules is used to exclude files and directoires, FileMatch
is used to include files.

New directive: PreSortedIndex

Controls which properties are pre-sorted while indexing. All properties are sorted by default.

New directive: ParserWarnLevel

Sets the level of warning printed when using libxml2.

New directive: obeyRobotsNoIndex [yes|NO]

When using libxml2 to parse HTML, Swish-e will skip files marked as NOINDEX.

 <meta name="robots" content="noindex">

Also, comments may be used within HTML and XML source docs to block sections of content from
indexing:

 <!-- SwishCommand noindex -->
 <!-- SwishCommand index -->

and/or these may be used also:

 <!-- noindex -->
 <!-- index -->

New directive: UndefinedXM LAt tributes

This describes how the content of XML attributes should be indexed, if at all. This is similar to
UndefinedMetaTags, but is only for XML attributes and when parsed by libxml2. The default is to
not index XML attributes.

New directive: XMLClas sAttributes

 1 Dec 200556

3.1.14 Version 2.2rc1 - August 29, 2002

XMLClassAttributes can specify a list of attribute names whose content is combined with the
element name to form metanames.

New directive: PropCompressionLevel [0-9]

If compiled with zlib, Swish-e uses this setting to control the level of compression applied to proper-
ties. Properties must be long enough (defined in config.h) to be compressed. Useful for StoreDescrip-
tion.

Experimental directive: IgnoreNumberChars

Defines a set of characters. If a word is made of of *only* those characters the word will not be
indexed.

New directive: FuzzyIndexingMode

This configuration directive is used to define the type of "fuzzy" index to create. Currently the
options are:

 None
 Stemming
 Soundex
 Metaphone
 DoubleMetaphone

Changes to command line arguments. See SWISH-RUN for documentation on these switches.

New command line argument -H

Controls the level (verbosity) of header information printed with search results.

New command line argument -x

Provides additional header output and allows for a format string to describe what data to print.

New command line argument -k

Prints words stored in the Swish-e index.

New command line argument -N

Provides a way to do incremental indexing by comparing last modification dates. You pass -N a path
to a file and only files newer than the last modified date of that file will be indexed.

Removed command line argument -D

-D no longer dumps the index file data. Use -T instead.

57 1 Dec 2005

3.1.14 Version 2.2rc1 - August 29, 2002SWISH-Enhanced: CHANGES - List of revisions

New command line argument -T

-T is used for debugging indexing and searching.

Enhanced command line argument -d

Now -d can accept some back-slashed characters to be used as output separators.

Enhanced command line argument -P

Now -P sets the phrase delimiter character in searches.

New command line argument -L

Swish-e 2.2 contains an experimental feature to limit results by a range of property values. This
behavior of this feature may change in the future.

Modi fied command line argument -v

Now the argument -v 0 results in *no* output unless there is an error. This is a bit more handy
when indexing with cron.

 1 Dec 200558

3.1.14 Version 2.2rc1 - August 29, 2002

4 SWISH-CONFIG - Configuration File Directives

59 1 Dec 2005

4 SWISH-CONFIG - Configuration File DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

4.1 Swish-e CONFIGURATION FILE
What files Swish-e indexes and how they are indexed, and where the index is written can be controlled by
a configuration file.

The configuration file is a text file composed of comments, blank lines, and configuration directives. The
order of the directives is not important. Some directives may be used more than once in the configuration
file, while others can only be used once (e.g. additional directives will overwrite preceding directives).
Case of the directive is not important -- you may use upper, lower, or mixed case.

Comments are any line that begin with a "#".

 # This is a comment

As of 2.4.3 lines may be continued by placing a backslas as the last character on the line:

 IgnoreWords \
 am \
 the \
 foo

Directives may take more than one parameter. Enclose single parameters that include whitespace in quotes
(single or double). Inside of quotes the backslash escapes the next character.

 ReplaceRules append "foo bar" <- define "foo bar" as a single parameter

If you need to include a quote character in the value either use a backslash to escape it, or enclose it in
quotes of the other type.

For example, under unix you can use quotes to include white space in a single parameter. Here, to protect
against path names (%p) that might have white space embedded use single quotes (this also protects
against shell expansion or metacharacters):

 FileFilter .foo foofilter "’%p’" <- parameter passed through the shell in single quotes
 FileFilter .foo foofilter ’"%p"’ <- windows uses double-quotes
 FileFilter .foo foofilter ’\’%p\’’<- silly example

Backslashes also have special meaning in regular expressions.

 FileFilterMatch pdftotext "’%p’ -" /\.pdf$/

This says that the dot is a real dot (instead of matching any character). If you place the regular expression
in quotes then you must use double-backslashes.

 1 Dec 200560

4.1 Swish-e CONFIGURATION FILE

 FileFilterMatch pdftotext "’%p’ -" "/\\.pdf$/"

Swish-e will convert the double backslash into a single backslash before passing the parameter to the
regular expression compiler.

Commented example configuration files are included in the conf directory of the Swish-e distribution.

Some command line arguments can override directives specified in the configuration file. Please see also
the SWISH-RUN for instructions on running Swish-e, and the SWISH-SEARCH page for information and
examples on how to search your index.

The configuration file is specified to Swish-e by the -c switch. For example,

 swish-e -c myconfig.conf

You may also split your directives up into different configuration files. This allows you to have a master
configuration file used for many different indexes, and smaller configuration files for each separate index.
You can specify the different configuration files when running from the command line with the -c switch
(see SWISH-RUN), or you may include other Configuration file with the IncludeConfigFile directive
below.

Typically, in a configuration file the directives are grouped together in some logical order -- that is, direc-
tives that control the source of the documents would be grouped together first, and directives that control
how each document is filtered or its words index in another group of directives. (The directives listed
below are grouped in this order).

The configuration file directives are listed below in these groups:

Administrative Headers Directives -- You may add administrative information to the header of the
index file.

Document Source Directives -- Directives for selecting the source documents and the location of the
index file.

Document Contents Directives -- Directives that control how a document content is indexed.

Directives for the File Access method only -- These directives are only applicable to the File Access
indexing method.

Directives for the HTTP Access Method Only -- Likewise, these only apply to the HTTP Access
method.

Directives for the prog Access Method Only -- These only apply to the prog Access method.

Document Filter Directives -- This is a special section that describes using document filters with
Swish-e.

61 1 Dec 2005

4.1 Swish-e CONFIGURATION FILESWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

4.1.1 Alphabetical Listing of Directives

AbsoluteLinks [yes|NO]

BeginCharacters *string of characters*

BumpPositionCounterCharacters *string*

Buzzwords [*list of buzzwords*|File: path]

ConvertHTMLEntities [YES|no]

DefaultContents [TXT|HTML|XML|TXT2|HTML2|XML2|TXT*|HTML*|XML*]

Delay *seconds*

DontBumpPositionOnEndTags *list of names*

DontBumpPositionOnStartTags *list of names*

EnableAltSearchSyntax [yes|NO]

EndCharacters *string of characters*

EquivalentServer *server alias*

ExtractPath *metaname* [replace|remove|prepend|append|regex]

FileFilter *suffix* *program* [options]

FileFilterMatch *program* *options* *regex* [*regex* ...]

FileInfoCompression [yes|NO]

FileMatch [contains|is|regex] *regular expression*

FileRules [contains|is|regex] *regular expression*

FuzzyIndexingMode [NONE|Stemming|Soundex|Metaphone|DoubleMetaphone]

FollowSymLinks [yes|NO]

HTMLLinksMetaName *metaname*

IgnoreFirstChar *string of characters*

IgnoreLastChar *string of characters*

 1 Dec 200562

4.1.1 Alphabetical Listing of Directives

IgnoreLimit *integer integer*

IgnoreMetaTags *list of names*

IgnoreNumberChars *list of characters*

IgnoreTotalWordCountWhenRanking [YES|no]

IgnoreWords [*list of stop words*|File: path]

ImageLinksMetaName *metaname*

IncludeConfigFile

IndexAdmin *text*

IndexAltTagMetaName *tagname*|as-text

IndexComments [yes|NO]

IndexContents [TXT|HTML|XML|TXT2|HTML2|XML2|TXT*|HTML*|XML*] *file extensions*

IndexDescription *text*

IndexDir [URL|directories or files]

IndexFile *path*

IndexName *text*

IndexOnly *list of file suffixes*

IndexPointer *text*

IndexReport [0|1|2|3]

MaxDepth *integer*

MaxWordLimit *integer*

MetaNameAlias *meta name* *list of aliases*

MetaNames *list of names*

MinWordLimit *integer*

NoContents *list of file suffixes*

63 1 Dec 2005

4.1.1 Alphabetical Listing of DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

obeyRobotsNoIndex [yes|NO]

ParserWarnLevel [0|1|2|3]

PreSortedIndex *list of property names*

PropCompressionLevel [0-9]

PropertyNameAlias *prop erty name* *list of aliases*

PropertyNames *list of meta names*

PropertyNamesCompareCase *list of meta names*

PropertyNamesIgnoreCase *list of meta names*

PropertyNamesNoStripChars *list of meta names*

PropertyNamesDate *list of meta names*

PropertyNamesNumeric *list of meta names*

PropertyNamesMaxLength integer *list of meta names*

PropertyNamesSortKeyLength integer *list of meta names*

ReplaceRules [replace|remove|prepend|append|regex]

ResultExtFormatName name -x format string

SpiderDirectory *path*

StoreDescription [XML <tag>|HTML <meta>|TXT size]

"SwishProgParameters *list of parameters*

SwishSearchDefaultRule [<AND-WORD>|<or-word>]

SwishSearchOperators <and-word> <or-word> <not-word>

TmpDir *path*

TranslateCharacters [*string1 string2*|:ascii7:]

TruncateDocSize *number of characters*

UndefinedMetaTags [error|ignore|INDEX|auto]

 1 Dec 200564

4.1.1 Alphabetical Listing of Directives

UndefinedXMLAttributes [DISABLE|error|ignore|index|auto]

UseStemming [yes|NO]

UseSoundex [yes|NO]

UseWords [*list of words*|File: path]

WordCharacters *string of characters*

XMLClassAttributes *list of XML attribute names*

4.1.2 Directives that Control Swish

These configuration directives control the general behavior of Swish-e.

IncludeConfigFile *path to config file*

This directive can be used to include configuration directives located in another file.

 IncludeConfigFile /usr/local/swish/conf/site_config.config

IndexReport [0|1|2|3]

This is how detailed you want reporting while indexing. You can specify numbers 0 to 3. 0 is totally
silent, 3 is the most verbose. The default is 1.

This may be overridden from the command line via the -v switch (see SWISH-RUN).

ParserWarnLevel [0|1|2|3]

Sets the error level when using the libxml2 parser for XML and HTML. libxml2 will point out struc-
tural errors in your documents.

 0 = no report
 1 = fatal errors
 2 = errors
 3 = warnings

The exception to this is UTF-8 to Latin-1 conversion errors are reported at level 1. This is because
words may be indexed incorrectly in these cases.

Note that unlike other errors generated by Swish-e, these errors are sent to stderr.

IndexFile *path*

65 1 Dec 2005

4.1.2 Directives that Control SwishSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

Index file specifies the location of the generated index file. If not specified, Swish-e will create the
file index.swish-e in the current directory.

 IndexFile /usr/local/swish/site.index

obeyRobotsNoIndex [yes|NO]

When enabled, Swish-e will not index any HTML file that contains:

 <meta name="robots" content="noindex">

The default is to ignore these meta tags and index the document. This tag is described at
http://www.robotstxt.org/wc/exclusion.html.

Note: This feature is only available with the libxml2 HTML parser.

Also, if you are using the libxml2 parser (HTML2 and XML2) then you can use the following
comments in your documents to prevent indexing:

 <!-- SwishCommand noindex -->
 <!-- SwishCommand index -->

and/or these may be used also:

 <!-- noindex -->
 <!-- index -->

For example, these are very helpful to prevent indexing of common headers, footers, and menus.

NOTE: This following items are currently not available. These items require Swish-e to parse the config-
uration file while searching.

EnableAltSearchSyntax [yes|NO]

NOTE: This following item is currently not available.

Enable alternate search syntax. Allows the usage of a basic "Altavista(c)", "Lycos(c)", etc. like
search syntax. This means a search query can contain "+" and "-" as syntax parameter.

Example:

 swish-e -w "+word1 +word2 -word3 word4 word5"
 "+" = following word has to be in all found documents
 "-" = following word may not be in any document found
 " " = following word will be searched in documents

 1 Dec 200566

4.1.2 Directives that Control Swish

http://www.robotstxt.org/wc/exclusion.html.

SwishSearchOperators <and-word> <or-word> <not-word>

NOTE: This following item is currently not available.

Using this config directive you can change the boolean search operators of Swish-e, e.g. to adapt
these to your language. The default is: AND OR NOT

Example (german):

 SwishSearchOperators UND ODER NICHT

SwishSearchDefaultRule [<AND-WORD>|<or-word>]

NOTE: This following item is currently not available.

SwishSearchDefaultRule defines the default Boolean operator to use if none is specified between
words or phrases. The default is AND.

The word you specify must match one of the available SwishSearchOperators.

Example:

 SwishSearchOperators UND ODER NICHT
 # Make it act like a web search engine
 SwishSearchDefaultRule ODER

ResultExtFor matName name -x format string

NOTE: This following item is currently not available.

The output of Swish-e can be defined by specifying a format string with the -x command line argu-
ment. Using ResultExtFormatName you can assign a predefined format string to a name.

Examples:

 ResultExtFormatName moreinfo "%c|%r|%t|%p|<author>|<publishyear>\n"

Then when searching you can specify the format string’s name

 swish-e ... -x moreinfo ...

See the -x switch in SWISH-RUN for more information about output formats.

67 1 Dec 2005

4.1.2 Directives that Control SwishSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

4.1.3 Administrative Headers Directives

Swish-e stores configuration information in the header of the index file. This information can be retrieved
while searching or by functions in the Swish-e C library. There are a number of fields available for your
own use. None of these fields are required:

IndexName *text*

IndexDescription *text*

IndexPointer *text*

IndexAdmin *text*

These variables specify information that goes into index files to help users and administrators. Index-
Name should be the name of your index, like a book title. IndexDescription is a short description of
the index or a URL pointing to a more full description. IndexPointer should be a pointer to the origi-
nal information, most likely a URL. IndexAdmin should be the name of the index maintainer and can
include name and email information. These values should not be more than 70 or so characters and
should be contained in quotes. Note that the automatically generated date in index files is in D/M/Y
and 24-hour format.

Examples:

 IndexName "Linux Documentation"
 IndexDescription "This is an index of /usr/doc on our Linux machine."
 IndexPointer http://localhost/swish/linux/index.html
 IndexAdmin webmaster

4.1.4 Document Source Directives

These directives control what documents are indexed and how they are accessed. See also Directives for
the File Access method only and Directives for the HTTP Access Method Only for directives that are
specific to those access methods.

IndexDir [directories or files|URL|external program]

IndexDir defines the source of the documents for Swish-e. Swish-e currently supports three file
access methods: File system, HTTP (also called spidering), and prog for reading files from an
external program.

The -S command line argument is used to select the file access method.

 swish-e -c swish.config -S fs - file system
 swish-e -c swish.config -S http - internal http spider
 swish-e -c swish.config -S prog - external program of any type

 1 Dec 200568

4.1.3 Administrative Headers Directives

http://localhost/swish/linux/index.html

For the fs method of access IndexDir is a space-separated list of files and directories to index. Use a
forward slash as the path separator in MS Windows.

For the http method the IndexDir setting is a list of space-separated URLs.

For the prog method the IndexDir setting is a list of space-separated programs to run (which gener-
ate documents for swish to index).

You may specify more than one IndexDir directive.

Any sub-directories of any listed directory will also be indexed.

Note: While processing directories, Swish-e will ignore any files or directories that begin with a dot
("."). You may index files or directories that begin with a dot by specifying their name with IndexDir
or -i .

Examples:

 # Index this directory an any subdirectories
 IndexDir /usr/local/home/http

 # Index the docs directory in current directory
 IndexDir ./docs

 # Index these files in the current directory
 IndexDir ./index.html ./page1.html ./page2.html
 # and index this directory, too
 IndexDir ../public_html

For the HTTP method of access specify the URL’s from which you want the spidering to begin.

Example:

 IndexDir http://www.my-site.com/index.html
 IndexDir http://localhost/index.html

Obviously, using the HTTP method to index is much slower than indexing local files. Be well aware
that some sites do not appreciate spidering and may block your IP address. You may wish to contact
the remote site before spidering their web site. More information about spidering can be found in
Directives for the HTTP Access Method Only below.

For the prog method of access IndexDir specifies the path to the program(s) to execute. The
external program must correctly format the documents being passed back to Swish-e. Examples of
external programs are provided in the prog-bin directory.

69 1 Dec 2005

4.1.4 Document Source DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

http://www.my-site.com/index.html
http://localhost/index.html

 IndexDir ./myprogram.pl

See prog for details.

Note: Not all directives work with all methods.

NoContents *list of file suffixes*

Files with these suffixes will not have their contents indexed, but will have their path name (file
name) indexed instead.

If the file’s type is HTML or HTML2 (as set by IndexContents or DefaultContents) then the file will
be parsed for a HTML title and that title will be indexed. Note that you must set the file’s type with
IndexContents or DefaultContents: .html and .htm are NOT type HTML by default. For example:

 IndexContents HTML* .htm .html

If a title is found, it will still be checked for FileRules title , and the file will be skipped if a
match is found. See FileRules.

If the file’s type is not HTML, or it is HTML and no title is found, then the file’s path will be
indexed.

For example, this will allow searching by image file name.

 NoContents .gif .xbm .au .mov .mpg .pdf .ps

Note: Using this directive will not cause files with those suffixes to be indexed. That is, if you use
IndexOnly to limit the types of files that are indexed, then you must specify in IndexOnly the same
suffixes listed in NoContents.

This does not work:

 # Wrong!
 IndexOnly .htm .html
 NoContents .gif .xbm .au .mov .mpg .pdf .ps

A -S prog program may set the No-Contents: header to enable this feature for a specific document
(although it would be smarter for the -S prog program to simply only send the pathname or title to
be indexed.

ReplaceRules [replace|remove|prepend|append|regex]

ReplaceRules allows you to make changes to file pathnames before they’re indexed. These changed
file names or URLs will be returned in search results.

 1 Dec 200570

4.1.4 Document Source Directives

For example, you may index your files locally (with the File system indexing method), yet return a
URL in search results. This directive can be used to map the file names to their respective URLs on
your web server.

There are five operations you can specify: replace, append, remove, prepend, and regex They will
parse the pathname in the order you’ve typed these commands.

This directive uses C library regex.h regular expressions.

 replace "the string you want replaced" "what to change it to"
 remove "a string to remove"
 prepend "a string to add before the result"
 append "a string to add after the result"
 regex "/search string/replace string/options"

Remember, quotes are needed if an expression contains white space, and backslashes have special
meaning.

Regex is an Extended Regular Expression. The first character found is the delimiter (but it’s not
smart enough to use matched chars such as [], (), and {}).

The replace string may use substitution variables:

 $0 the entire matched (sub)string
 $1-$9 returns patterns captured in "(" ")" pairs
 $‘ the string before the matched pattern
 $’ the string after the matched pattern

The options change the behavior of expression:

 i ignore the case when matching
 g repeat the substitution for the entire pattern

Examples:

 ReplaceRules replace testdir/ anotherdir/
 ReplaceRules replace [a-z_0-9]*_m.*\.html index.html

 ReplaceRules remove testdir/

 ReplaceRules prepend http://localhost/
 ReplaceRules append .html

71 1 Dec 2005

4.1.4 Document Source DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

http://localhost/

 ReplaceRules regex !^/web/(.+)/! http:// $1.domain.com/!
 replaces a file path:
 /web/search/foo/index.html
 with
 http://search.domain.com/foo/index.html

 ReplaceRules regex #^# http://localhost/www#
 ReplaceRules prepend http://localhost/www (same thing)

 # Remove all extensions from C source files
 ReplaceRules remove .c # ERROR! That "." is *any char*
 ReplaceRules remove \.c # much better...

 ReplaceRules remove "\\.c" # if in quotes you need double-backslash!
 ReplaceRules remove "\.c" # ERROR! "\." -> "." and is *any char*

IndexContents [TXT|HTML|XML|TXT2|HTML2|XML2|TXT*|HTML*|XML*] *file extensions*

The IndexContents directive assigns one of Swish-e’s document parsers to a document, based on the
its extension. Swish-e currently knows how to parse TXT, HTML, and XML documents.

The XML2, HTML2, and TXT2 parsers are currently only available when Swish-e is configured to
use libxml2.

You may use XML*, HTML*, and TXT* to select the parser automatically. If libxml2 is installed
then it will be used to parse the content. Otherwise, Swish-e’s internal parsers will be used.

Documents that are not assigned a parser with IndexContents will, by default, use the HTML2 parser
if libxml2 is installed, otherwise will use Swish-e’s internal HTML parser. The DefaultContents
directive may be used to assign a parser to documents that do not match a file extension defined with
the IndexContents directive.

Example:

 IndexContents HTML* .htm .html .shtml
 IndexContents TXT* .txt .log .text
 IndexContents XML* .xml

HTML* is the default type for all files, unless otherwise specified (and this default can be changed
by the DefaultContents directive. Swish-e parses titles from HTML files, if available, and keeps
track of the context of the text for context searching (see -t in SWISH-RUN).

If using filters (with the FileFilter directive) to convert documents you should include those exten-
sions, too. For example, if using a filter to convert .pdf to .html, you need to tell Swish-e that .pdf
should be indexed by the internal HTML parser:

 1 Dec 200572

4.1.4 Document Source Directives

http://
http://search.domain.com/foo/index.html
http://localhost/www#
http://localhost/www

 FileFilter .pdf pdf2html
 IndexContent HTML .pdf

See also Document Filter Directives.

Note: Some of this may be changed in the future to use content-types instead of file extensions. See
SWISH-3.0

DefaultContents [TXT|HTML|XML|TXT2|HTML2|XML2|TXT*|HTML*|XML*]

This sets the default parser for documents that are not specified in IndexContents. If not specified
the default is HTML.

The XML2, HTML2, and TXT2 parsers are currently only available when Swish-e is configured to
use libxml2.

You may use XML*, HTML*, and TXT* to select the parser automatically. If libxml2 is installed
then it will be used to parse the content. Otherwise, Swish-e’s internal parsers will be used.

Example:

 DefaultContents HTML

The DefaultContents directive should be used when spidering, as HTML files may be returned
without a file extension (such as when requesting a directory and the default index.html is returned).

FileIn foCompression [yes|NO]

** This directive is currently not supported **

Setting FileIn foCompression to yes will compress the index file to save disk space. This may result
in longer indexing times. The default is no .

Also see the -e switch in SWISH-RUN for saving RAM during indexing.

4.1.5 Document Contents Directives

These directives control what information is extracted from your source documents, and how that infor-
mation is made available during searching.

ConvertHTM LEnti ties [YES|no]

ASCII entities can be converted automatically while indexing documents of type HTML (not for
HTML2). For performance reasons you may wish to set this to no if your documents do not contain
HTML entities. The default is yes .

73 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

If ConvertHTMLEntities is set no the entities will be indexed without conversion.

NOTE: Entities within XML files and files parsed with libxml2 (HTML2) are converted regardless
of this setting.

MetaNames *list of names*

META names are a way to define "fields" in your XML and HTML documents. You can use the
META names in your queries to limit the search to just the words contained in that META name of
your document. For example, you might have a META tagged field in your documents called
subjects and then you can search your documents for the word "foo" but only return documents
where "foo" is within the subjects META tag.

 swish-e -w subjects=foo

(See also the -t switch in SWISH-RUN for information about context searching in HTML docu-
ments.)

The MetaNames directive is a space separated list. For example:

 MetaNames meta1 meta2 keywords subjects

You may also use UndefinedMetaTags to specify automatic extraction of meta names from your
HTML and XML documents, and also to ignore indexing content of meta tags.

META tags can have two formats in your HTML source documents:

 <META NAME="meta1" CONTENT="some content">

and (if using the HTML2/libxml2 parser)

 <meta1>
 some content
 </meta1>

But this second version is invalid HTML, and will generate a warning if ParserWarningLevel is set
(libxml2 only).

And in XML documents, use the format:

 <meta1>
 Some Content
 </meta1>

 1 Dec 200574

4.1.5 Document Contents Directives

Then you can limit your search to just META meta1 like this:

 swish-e -w ’meta1=(apples or oranges)’

You may nest the XML and the start/end tag versions:

 <keywords>
 <tag1>
 some content
 </tag1>
 <tag2>
 some other content
 </tag2>
 <keywords>

Then you can search in both tag2 and tag2 with:

 swish-e -w ’keywords=(query words)’

Swish-e indexes all text as some metaname. The default is swishde fault , so these two queries
are the same:

 swish-e -w foo
 swish-e -w swishdefault=foo

When indexing HTML Swish-e indexes the HTML title as default text, so when searching Swish-e
will find matches in both the HTML body and the HTML title. Swish also, by default, indexes
content of meta tags. So:

 swish-e -w foo

will find "foo" in the body, the title, or any meta tags.

Currently, there’s no way to prevent Swish-e from indexing the title contents along with the body
contents, but see UndefinedMetaTags for how to control the indexing of meta tags.

If you would like to search just the title text, you may use:

 MetaNames swishtitle

This will index the title text separately under the built-in swish internal meta name "swishtitle". You
may then search like

75 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 swish-e -w foo -- search for "foo" in title, body (and undefined meta tags)
 swish-e -w swishtitle=foo -- search for "foo" in title only

In addition to swishtitle, you can limit searches to documents’ path with:

 MetaNames swishdocpath

Then to search for "foo" but also limit searches to documents that include "manual" or "tutorial" in
their path:

 swish-e -w foo swishdocpath=(manual or tutorial)

See also ExtractPath.

MetaNameAlias *meta name* *list of aliases*

MetaNameAlias assigns aliases for a meta name. For example, if your documents contain meta tags
"description", "summary", and "overview" that all give a summary of your documents you could do
this:

 MetaNames summary
 MetaNameAlias summary description overview

Then all three tags will get indexed as meta tag "summary". You can then search all the fields as:

 -w summary=foo

The Alias work at search time, too. So these will also limit the search to the "summary" meta name.

 -w description=foo
 -w overview=foo

MetaNamesRank integer *list of meta names*

You can assign a bias to metanames that will affect how ranking is calculated. The range of values is
from -10 to +10, with zero being no bias.

 MetaNamesRank 4 subject
 MetaNamesRank 3 swishdefault
 MetaNamesRank 2 author publisher
 MetaNamesRank -5 wrongwords

This feature is still considered experimental. If you use it, please send feedback to the discussion list.

 1 Dec 200576

4.1.5 Document Contents Directives

HTMLLinksMetaName *metaname*

Allows indexing of HTML links. Normally, HTML links (href tags) are not indexed by Swish-e. This
directive defines a metaname, and links will be indexed under this meta name.

Example:

 HTMLLinksMetaName links

Now, to limit searches to files with a link to "home.html" do this:

 -w links=’"home.html"’

The double quotes force a phrase search.

To make Swish-e index links as normal text, you may use:

 HTMLLinksMetaName swishdefault

This feature is only available with the libxml2 HTML parser.

ImageLinksMetaName *metaname*

Allows indexing of image links under a metaname. Normally, image URLs are not indexed.

Example:

 ImagesLinksMetaName images

Now, if you would like to find pages that include a nice image of a beach:

 -w images=’beach’

To make Swish-e index links as normal text, you may use:

 ImageLinksMetaName swishdefault

This feature is only available with the libxml2 HTML parser.

IndexAlt TagMetaName *tagname*|as-text

Allows indexing of images ALT tag text. Specify either a tag name which will be used as a
metaname, or the special text "as-text" which says to index the ALT text as if it were plain text at the
current location.

77 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

For example, by specifying a tag name:

 IndexAltTagMetaName bar

would make this markup:

 <foo>

 </foo>

appear like

 <foo>
 <bar>Alt text here</bar>
 </foo>

Then the normal rules (MetaNames and PropertyNames) apply to how that text is indexed.

If you use the special tag "as-text" then

 <foo>

 </foo>

simply becomes

 <foo>
 Alt text here
 </foo>

This feature is only available when using the libxml2 parser (HTML2 and XML2).

AbsoluteLinks [yes|NO]

If this is set true then Swish-e will attempt to convert relative URIs extracted from HTML documents
for use with HTMLLinksMetaName and ImageLinksMetaName into absolute URIs. Swish-e will use
any <BASE> tag found in the document, otherwise it will use the file’s pathname. The pathname
used will be the pathname *after* ReplaceRules has been applied to the document’s pathname.

For example, say you wish to index image links under the metaname "images".

 ImageLinksMetaName images

If an image is located in http://localhost/vacations/france/index.html and AbsoluteLinks is set to no,
then a image within that document:

 1 Dec 200578

4.1.5 Document Contents Directives

http://localhost/vacations/france/index.html

will only index "beach.jpeg".

But, if you want more detail when searching, you can enable AbsoluteLinks and Swish-e will index
"http://localhost/vacations/france/beach.jpeg". You can then look for images of beaches, but only in
France:

 -w images=(beach and france)

This also means you can search for any images within France:

 -w images=(france)

This feature is only available with the libxml2 HTML parser.

UndefinedMetaTags [error|ignore|INDEX|auto]

This directive defines the behavior of Swish-e during indexing when a meta name is found but is not
listed in MetaNames. There are four choices:

UndefinedMetaTags error

If a meta name is found that is not listed in MetaNames then indexing will be halted and an
error reported.

UndefinedMetaTags ignore

The contents of the meta tag are ignored and not indexed unless a metaname has been defined
with the MetaNames directive.

UndefinedMetaTags index

The contents of the meta tag are indexed, but placed in the main index unless there’s an enclos-
ing metatag already in force. This is the default.

UndefinedMetaTags auto

This method create meta tags automatically for HTML meta names and XML elements. Using
this is the same as specifying all the meta names explicitly in a MetaNames directive.

UndefinedXM LAt tributes [DISABLE|error|ignore|index|auto]

This is similar to UndefinedMetaTags, but only applies to XML documents (parsed with libxml2).
This allows indexing of attribute content, and provides a way to index the content under a metaname.
For example, UndefinedXMLAttributes can make

79 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 <person age="23">
 John Doe
 </person>

look like the following to swish:

 <person>
 <person.age>
 23
 </person.age>
 John Doe
 </person>

What happens to the text "23" will depend on the setting of UndefinedXMLAttributes:

disable

XML attributes are not parsed and not indexed. This is the default.

error

If the concatenated meta name (e.g. person.age) is not listed in MetaNames then indexing will
be halted and an error reported.

ignore

The contents of the meta tag are ignored and not indexed unless a metaname has been defined
with the MetaNames directive.

index

The contents of the meta tag are indexed, but placed in the main index unless there’s an enclos-
ing metatag already in force.

auto

This method will create meta tags from the combined element and attributes (and XML Class
name) This options should be used with caution as it can generate a lot of metaname entries.

See also the example below XMLClas sAt tribues .

XMLClas sAttributes *list of XML attribute names*

Combines an XML class name with the element name to make up a metaname. For example:

 XMLClassAttributes class

 1 Dec 200580

4.1.5 Document Contents Directives

 <person class="first">
 John
 </person>
 <person class="last">
 Doe
 </person>

Will appear to Swish-e as:

 <person>
 <person.first>
 John
 </person.first>
 </person>
 <person>
 <person.last>
 Doe
 </person.last>
 </person>

How the data is indexed depends on MetaNames and UndefinedMetaTags.

Here’s an example using the following configuration which combines the two directives XMLClas-
sAttributes and UndefinedXMLAttributes.

 XMLClassAttributes class
 UndefinedMetaTags auto
 UndefinedXMLAttributes auto
 IndexContents XML2 .xml

The source XML file looks like:

 <xml> <person class="student" phone="555-1212" age="102"> John </person>
 <person greeting="howdy">Bill</person> </xml>

Swish-e parses as:

 ./swish-e -c 2 -i 1.xml -T parsed_tags parsed_text -v 0
 Indexing Data Source: "File-System"

 <xml> (MetaName)

81 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 <person> (MetaName)
 <person.student> (MetaName)
 <person.student.phone> (MetaName)
 555-1212
 </person.student.phone>
 <person.student.age> (MetaName)
 102
 </person.student.age>
 John
 </person>

 <person> (MetaName)
 <person.greeting> (MetaName)
 howdy
 </person.greeting>
 Bill
 </person>

 </xml>
 Indexing done!

One thing to note is that the first <person> block finds a class name "student" so all metanames that
are created from attributes use the combined name "person.student". The second <person> block
doesn’t contain a "class" so, the attribute name is combined directly with the element name (e.g.
"person.greeting").

ExtractPath *metaname* [replace|remove|prepend|append|regex]

This directive can be used to index extracted parts of a document’s path. A common use would be to
limit searches to specific areas of your file tree.

The extracted string will be indexed under the specified meta name.

See ReplaceRules for a description of the various pattern replacement methods, but you will use the
regex method.

For example, say your file system (or web tree) was organized into departments:

 /web/sales/foo...
 /web/parts/foo...
 /web/accounting/foo...

And you wanted a way to limit searches to just documents under "sales".

 ExtractPath department regex !^/web/([^/]+)/.*$!$1!

 1 Dec 200582

4.1.5 Document Contents Directives

Which says, extract out the department name (as substring $1) and index it as meta name depart -
ment . Then to limit a search to the sales department:

 swish-e -w foo AND department=sales

Note that the regex method uses a substitution pattern, so to index only a sub-string match the
entire document path in the regular expression, as shown above. Otherwise any part that is not
matched will end up in the substitution pattern.

See the ExtractPathDefault option for a way to set a value if not patterns match.

Although unlikely, you may use more than one ExtractPath directive. More than one directive of the
same meta name will operate successively (in order listed in the configuration file) on the path. This
allows you to use regular expressions on the results of the previous pattern substitution (as if piping
the output from one expression to the patter of the next).

 ExtractPath foo regex !^(...).+$!$1!
 ExtractPath foo regex !^.+(.)$!$1!

So, the third letter is indexed as meta name "foo" if both patterns match.

 ExtractPath foo regex !^X(...).+$!$1!
 ExtractPath foo regex !^.+(.)$!$1!

Now (not the "X"), if the first pattern doesn’t match, the last character of the path name is indexed.
You must be clear on this behavior if you are using more than one ExtractPath directive with the
same metaname.

The document path operated on is the real path swish used to access the document. That is, the
ReplaceRules directive has no effect on the path used with ExtractPath.

The full path is used for each meta name if more than one ExtractPath directive is used. That is,
changes to the path used in Extract Path foo do not affect the path used by Extract Path
bar .

ExtractPathDefault *metaname* default_value

This can be used with ExtractPath to set a default string to index under the given metaname if none
of the ExtractPath patterns match.

For example, say your want to index each document with a metaname "department" based on the
following path examples:

 /web/sales/foo...
 /web/parts/foo...
 /web/accounting/foo...

83 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

But you are also indexing documents that do not follow that pattern and you want to search those
separately, too.

 ExtractPath department regex !^/web/([^/]+)/.*$!$1!
 ExtractPathDefault department other

Now, you may search like this:

 -w foo department=(sales) - limit searches to the sales documents
 -w foo department=(parts) - limit searches to the parts documents
 -w foo department=(accounting) - limit searches to the accounting documents
 -w foo department=(other) - everything but sales, parts, and accounting.

This basically is a shortcut for:

 -w foo not department=(sales or parts or accounting)

but you don’t need to keep track of what was extracted.

PropertyNames *list of meta names*

PropertyNamesCompareCase *list of meta names*

PropertyNamesIgnoreCase *list of meta names*

Swish-e allows you to specify certain META tags that can be used as document properties. The
contents of any META tag that has been identified as a document property can be returned as part of
the search results along with the rank, file name, title, and document size (see the -p and -x
switches in SWISH-RUN).

Properties are useful for returning additional data from documents in search results -- this saves the
effort of reading and parsing the source files while reading Swish-e search results, and is especially
useful when the source documents are no longer available or slow to access (e.g. over http).

Another feature of properties is that Swish-e can use the PropertyNames for sorting the search results
(see the -s switch).

 PropertyNames author subjects

Two variations are available. PropertyNamesCompareCase and PropertyNamesIgnoreCase. These
tell Swish-e to either ignore or compare case when sorting results. The default for PropertyNames is
to ignore the case.

 PropertyNamesIgnoreCase subject
 PropertyNamesCompareCase keyword

 1 Dec 200584

4.1.5 Document Contents Directives

The defaults for "internal" properties are:

 swishtitle -- ignore the case
 swishdocpath -- compare case
 swishdescription -- compare case

These can be overridden with PropertyNamesCompareCase and PropertyNamesIgnoreCase.

 PropertyNamesCompareCase swishtitle

Use of PropertyNames will increase the size of your index files, sometimes significantly. Properties
will be compressed if Swish-e is compiled with zlib as described in the INSTALL manual page.

If Swish-e finds more than one property of the same name in a document the property’s contents will
be concatinated for strings, and a warning issues for numeric (or date) properties.

PropertyNamesNoStripChars

PropertyNamesNoStripChars specifies that the listed properties should not have strings of low ASCII
characters replaced with a space character. Properties will be stored as found in the document.

When printing properties with the swish-e binary newlines are replaced with a space character. Use
the swish-e library (or SWISH::API perl module) to fetch properties without newlines replaced.

PropertyNamesNumeric

This directive is similar to PropertyNames, but it flags the property as being a string of digits (integer
value) that will be stored as binary data instead of a string. This allows sorting with -s and limit ing
with -L to sort and limit the property correctly.

Swish-e uses strtoul(3) to convert the string into an unsigned long integer. Therefore, only posi-
tive integers can be stored.

Future versions of Swish-e may be able to store different property types (such as negative integers
and real numbers). This directive may change in future releases of Swish.

PropertyNamesDate

This directive is exactly like PropertyNamesNumeric, but it also flags the number as a machine
timestamp (seconds since Epoch), and will print a formatted date when returning this property. See
-x in SWISH-RUN.

Swish-e will not parse dates when indexing; you must use a timestamp.

PropertyNameAlias *prop erty name* *list of aliases*

85 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

This allows aliases for a property name. For example, if you are indexing HTML files, plus XML
files that are written in English, German, and Spanish and thus use the tags "title", "titel", and "título"
you can use:

 PropertyNameAlias swishtitle title titel título titulo

Note that "swishtitle" is the built-in property used to store the title of a document, and therefore you
do not need to specify it as a PropertyName before use.

PropertyNamesMaxLength integer *list of meta names*

This option will set the max length of the text stored in a property. You must specify a number
between 0 and the max integer size on your platform, and a list of properties. The properties specified
must not be aliases.

If any of the property names do not exist they will be created (e.g. you do not need to define the
property with PropertyNames first).

In general, this feature will only be useful when parsing HTML or XML with the libxml2 parser.

For example:

 PropertyNamesMaxLength 1000 swishdescription
 PropertyNameAlias swishdescription body

Is somewhat like

 StoreDescription HTML <body> 1000
 StoreDescription XML <body> 1000
 StoreDescription HTML2 <body> 1000
 StoreDescription XML2 <body> 1000

but StoreDescription allows setting the tag for each parser type.

 PropertyNamesMaxLength 1000 headings
 PropertyNameAlias headings h1 h2 h3 h4

collects all the heading text into a single property called "headings", not to exceed 1000 characters.

PropertyNamesSortKeyLength integer *list of meta names*

Sets the length of the string used when sorting. The default is 100 characters. The -T metanames
debugging option will list the current values for an index.

This setting is used when sorting during indexing, and perhaps when sorting while searching. It also
effects the order when limit ing to a range of values with the -L option.

 1 Dec 200586

4.1.5 Document Contents Directives

PreSortedIndex *list of property names*

By default Swish-e generates presorted tables while indexing for each property name. This allows
faster sorting when generating results. On large document collections this presorting may add to the
indexing time, and also adds to the total size of the index. This directive can be used to customize
exactly which properties will be presorted.

If PreSortedIndex it is not present in the config file (default action), all the properties will be
presorted at indexing time. If it is present without any parameter, no properties will be presorted.
Otherwise, only the property names specified will be presorted.

For example, if you only wish to sort results by a property called title :

 PropertyNames title age time
 PreSortedIndex title

StoreDescription [XML <tag> size|HTML <meta> size|TXT size]

StoreDescription allows you to store a document description in the index file. This description can
be returned in your search results when the -x switch is used to include the swishdescription for
extended results, or by using -p swishde scrip tion .

The document type (XML, HTML and TXT) must match the document type currently being indexed
as set by IndexContents or DefaultContents. See those directives for possible values. A common
problem is using StoreDescription yet not setting the document’s type with IndexContents or
DefaultContents. Another problem is different types:

 IndexContents HTML2 .html
 StoreDescription HTML <body>

Then .html documents are assigned a type of HTML2 (and parsed by the libxml2 parser), but the
description will not be stored since it is type HTML instead of HTML2.

For text documents you specify the type TXT (or TXT2 or TXT*) and the number of characters to
capture.

 StoreDescription TXT 20

The above stores only the first twenty characters from the text file in the Swish-e index file.

For HTML, and XML file types, specify the tag to use for the description, and optionally the number
of characters to capture. If not specified will capture the entire contents of the tag.

 StoreDescription HTML <body> 20000
 StoreDescription XML <desc> 40

87 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

Again, note that documents must be assigned a document type with IndexContents or DefaultCon-
tents to use this feature.

Swish-e will compress the descriptions (or any other large property) if compiled to use zlib (see
INSTALL). This is recommended when using StoreDescription and a large number of documents.
Compression of 30% to 50% is not uncommon with HTML files.

PropCompressionLevel [0-9]

This directive sets the compression level used when storing properties to disk. A setting of zero is no
compression, and a setting of nine is the most compression.

The default depends on the default setting compiled with zlib, but is typically six.

This option is useful when using StoreDescription to store a large amount text in properties (or if
using PropertyNames with large property sizes).

Properties must be over a value defined in config.h (100 is the default) before compression will be
attempted. Swish-e will never store the results of the compression if the compressed data is larger
than the original data.

This option is only available when Swish-e is compiled with zlib support.

Trun cateDocSize *number of characters*

TruncateDocSize limits the size of a document while indexing documents and/or using filters. This
config directive truncates the numbers of read bytes of a document to the specified size. This means:
if a document is larger, read only the specified numbers of bytes of the document.

Example:

 TruncateDocSize 10000000

The default is zero, which means read all data.

Warning: If you use TruncateDocSize, use it with care! TruncateDocSize is a safety belt only, to
limit e.g. filteroutput, when accessing databases, or to limit "runnaway" filters. Truncating doc input
may destroy document structures for Swish-e (e.g. swish may miss closing tags for XML or HTML
documents).

TruncateDocSize does not currently work with the prog input source method.

FuzzyIndexingMode NONE|Stemming|Soundex|Metaphone|DoubleMetaphone

Selects the type of index to create. Only one type of index may be created.

 1 Dec 200588

4.1.5 Document Contents Directives

It’s a good idea to create both a normal index and a fuzzy index and allow your search interface
select which index to use. Many people find the fuzzy searches to be too fuzzy.

The available fuzzy indexing options can be displayed by running

 swish-e -T LIST_FUZZY_MODES

Available options include:

None

Words are stored in the index without any conversion. This is the default.

Stemming_*

This options uses one of the installed Snowball stemmers (http://snowball.tartarus.org/).

The installed stemmers can be viewed by running

 swish-e -T LIST_FUZZY_MODES

For example, to use the Spanish stemming module:

 FuzzyIndexingMode Stemming_es

Stem or Stemming_en

Selects the legacy Swish-e English stemmer.

This is deprecated in favor of the Snowball English stemmers (Stemming_en1, Stemming_en2).
Future versions of Swish-e will likely use the Stemming_en2 stemmer by default.

Words are converted using the Porter stemming algorithm.

From: http://www.tartarus.org/~martin/PorterStemmer/

 The Porter stemming algorithm (or Porter stemmer) is a
 process for removing the commoner morphological and inflexional
 endings from words in English. Its main use is as part of a
 term normalisation process that is usually done when setting up
 Information Retrieval systems.

This will help a search for "running" to also find "run" and "runs", for example.

The stemming function does not convert words to their root, rather programmatically removes
endings on words in an attempt to make similar words with different endings stem to the same
string of characters. It’s not a perfect system, and searches on stemmed indexes often return

89 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

http://www.tartarus.org/~martin/PorterStemmer/

curious results. For example, two entirely different words may stem to the same word.

Stemming also can be confusing when used with a wildcard (truncation). For example, you
might expect to find the word "running" by searching for "runn*". But this fails when using a
stemmed index, as "running" stems to "run", yet searching for "runn*" looks for words that start
with "runn".

Soundex

Soundex was developed in the 1880s so records for people with similar sounding names could
be found more readily. Soundex is a coded surname based on the way a surname sounds rather
than spelling. Surnames that sound similar, like Smith and Smyth, are filed together under the
same Soundex code. This is mostly useful for US English.

Soundex should not be used to search for sound-alike words. Metaphone would be more appro-
priate for generic sound matching of words. Soundex should only be used where you need to
search multiple documents for proper names which sound similar. This is primarily used for
indexing genealogical records. This may be useful for indexing other collections of data consist-
ing mostly of names. Many common name variations are matched by Soundex. The only notable
exception is the first letter of the name. The first letter is not matched for sound.

Metaphone and DoubleMetaphone

Words are transformed into a short series of letters representing the sound of the word (in
English). Metaphone algorithms are often used for looking up mis-spelled words in dictionary
programs.

From: http://aspell.sourceforge.net/metaphone/

 Lawrence Philips’ Metaphone Algorithm is an algorithm which returns
 the rough approximation of how an English word sounds.

The DoubleMeta phone mode will sometimes generate two different metaphones for the
same word. This is supposed to be useful when a word may be pronounced more than one way.

A metaphone index should give results somewhere in between Soundex and Stemming.

UseStemming [yes|NO]

Put yes to apply word stemming algorithm during indexing, else no.

 UseStemming no
 UseStemming yes

When UseStemming is set to yes every word is stemmed before placing it in to the index.

 1 Dec 200590

4.1.5 Document Contents Directives

http://aspell.sourceforge.net/metaphone/

This option is deprecated. It has been superceded by FuzzyIndexingMode.

UseSoundex [yes|NO]

When UseSoundex is set to yes every word is converted to a Soundex code before placing it in to
the index.

This option is deprecated. It has been superceded by FuzzyIndexingMode.

IgnoreTotalWordCountWhenRanking [YES|no]

Put yes to ignore the total number of words in the file when calculating ranking. Often better with
merges and small files. Default is yes.

 IgnoreTotalWordCountWhenRanking no

The default was changed from no to yes in version 2.2.

NOTE: must be set to no if you intend to use the -R 1 option when searching.

MinWordLimit *integer*

Set the minimum length of an word. Shorter words will not be indexed. The default is 1 (as defined
in src/config.h).

 MinWordLimit 5

MaxWordLimit *integer*

Set the maximum length of an indexable word. Every longer word will not be indexed. The Default is
40 (as defined in src/config.h).

WordCharacters *string of characters*

IgnoreFirstChar *string of characters*

IgnoreLastChar *string of characters*

BeginCharacters *string of characters*

EndCharacters *string of characters*

These settings define what a word consists of to the Swish-e indexing engine. Compiled in defaults
are in src/config.h.

When indexing Swish-e uses WordCharacters to split up the document into words. Words are
defined by any string of non-blank characters that contain only the characters listed in WordCharac-
ters. If a string of characters includes a character that is not in WordCharacters then the word will be

91 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

spit into two or more separate words.

For example:

 WordCharacters abde

Would turn "abcde" into two words "ab" and "de".

Next, of these words, any characters defined in IgnoreFirstChar are stripped off the start of the
word, and IgnoreLastChar characters are stripped off the end of the word. This allows, for example,
periods within a word (www.slashdot.com), but not at the end of a word. Characters in Ignore-
FirstChar and IgnoreLastChar must be in WordCharacters.

Finally, the resulting words MUST begin with one of the characters listed in BeginCharacters and
end with one of the characters listed in EndCharacters. BeginCharacters and EndCharacters must be
a subset of the characters in WordCharacters. Often, WordCharacters, BeginCharacters and EndChar-
acters will all be the same.

Note that the same process applies to the query while searching.

Getting these settings correct will take careful consideration and practice. It’s helpful to create an
index of a single test file, and then look at the words that are placed in the index (see the -v 4, -D
and -k searching switches).

Currently there is only support for eight-bit characters.

Example:

 WordCharacters .abcdefghijklmnopqrstuvwxyz
 BeginCharacters abcdefghijklmnopqrstuvwxyz
 EndCharacters abcdefghijklmnopqrstuvwxyz
 IgnoreFirstChar .
 IgnoreLastChar .

So the string

 Please visit http://www.example.com/path/to/file.html.

will be indexed as the following words:

 please
 visit
 http
 www.example.com
 path
 to
 file.html

 1 Dec 200592

4.1.5 Document Contents Directives

http://www.example.com/path/to/file.html.

Which means that you can search for www.example.com as a single word, but searching for just
example will not find the document.

Note: when indexing HTML documents HTML entities are converted to their character equivalents
before being processed with these directives. This is a change from previous versions of Swish-e
where you were required to include the characters 0123456789&#; to index entities. See also
ConvertHTMLEntities

Buzzwords [*list of buzzwords*|File: path]

The Buzzwords option allows you to specify words that will be indexed regardless of WordCharac-
ters, BeginCharacters, EndCharacters, stemming, soundex and many of the other checks done on
words while indexing.

Buzzwords are case insensitive.

Buzzwords should be separated by spaces and may span multiple directives. If the special format
File:file name is used then the Buzzwords will be read from an external file during indexing.

Examples:

 Buzzwords C++ TCP/IP

 Buzzwords File: ./buzzwords.lst

If a Buzzword contains search operator characters they must be backslashed when searching. For
example:

 Buzzwords C++ TCP/IP web=http

 ./swish-e -w ’web\=http’

Buzzwords are found by splitting the text on whitespace, removing IgnoreFirstChar and Ignore-
LastChar characters from the word, and then comparing with the list of Buzzwords. Therefore, if
adding Buzzwords to an index you will probably want to define IgnoreFirstChar and IgnoreLastChar
settings.

Note: Buzzwords specific settings for IgnoreFirstChar and IgnoreLastChar may be used in the future.

IgnoreWords [*list of stop words*|File: path]

The IgnoreWords option allows you to specify words to ignore, called stopwords. The default is to
not use any stopwords.

93 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

Words should be separated by spaces and may span multiple directives. If the special format
File:file name is used then the stop words will be read from an external file during indexing.

In previous versions of Swish-e you could use the directive

 IgnoreWords swishdefault - obsolete!

to include a default list of compiled in stopwords. This keyword is no longer supported.

Examples:

 IgnoreWords www http a an the of and or

 IgnoreWords File: ./stopwords.de

UseWords [*list of words*|File: path]

UseWords defines the words that Swish-e will index. Only the words listed will be indexed.

You can specify a list of words following the directive (you may specify more than one UseWords
directive in a config file), and/or use the File: form to specify a path to a file containing the words:

 UseWords perl python pascal fortran basic cobal php
 UseWords File: /path/to/my/wordlist

Please drop the Swish-e list a note if you actually use this feature. It may be removed from future
versions.

IgnoreLimit *integer integer*

This automatically omits words that appear too often in the files (these words are called stopwords).
Specify a whole percentage and a number, such as "80 256". This omits words that occur in over
80% of the files and appear in over 256 files. Comment out to turn off auto-stopwording.

 IgnoreLimit 50 1000

Swish-e must do extra processing to adjust the entire index when this feature is used. It is recom-
mended that instead of using this feature that you decided what words are stopwords and add them to
IngoreWords in your configuration file. To do this, use IgnoreLimit one time and note the stop
words that are found while indexing. Add this list to IgnoreWords, and then remove IgnoreLimit
from the configuration file.

IgnoreMetaTags *list of names*

 1 Dec 200594

4.1.5 Document Contents Directives

IgnoreMetaTags defines a list of metatags to ignore while indexing XML files (and HTML files if
using libxml2 for parsing HTML). All text within the tags will be ignored -- both for indexing
(MetaNames) and properties (PropertyNames). To still parse properties, yet do not index the text, see
UndefinedMetaTags.

This option is useful to avoid indexing specific data from a file. For example:

 <person>
 <first_name>
 William
 </first_name> <last_name>
 Shakespeare
 </last_name> <updated_date>
 April 25, 1999
 </updated_date>
 </person>

In the above example you might not want to index the updated date, and therefore prevent finding
this record by searching

 -w ’person=(April)’

This is solved by:

 IgnoreMetaTags updated_date

See also UndefinedMetaTags.

IgnoreNumberChars *list of characters*

Experimental Feature

This experimental feature can be used to define a set of characters that describe a number. If a word
is found to contain only those characters it will not be indexed. The characters listed must be part of
WordCharacters settings. In other words, the "word" checked is a word that Swish-e would otherwise
index.

For example,

 IgnoreNumberChars 0123456789$.,

Then Swish-e would not index the following:

 123
 123,456.78
 $123.45

95 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

You might be tempted to avoid indexing hex numbers with:

 IgnoreNumberChars 0123456789abcdef

which will not index 0D31, but will also not index the word "bad".

This is an experimental feature that may change in future versions. One possible change is to use
regular expressions instead.

IndexComments [NO|yes]

This option allows the user decide if to index the contents of HTML comments. Default is no. Set to
yes if comment indexing is required.

 IndexComments yes

Note: This is a change in the default behavior prior to version 2.2.

TranslateCharacters [*string1 string2*|:ascii7:]

The TranslateCharacters directive maps the characters in string1 to the characters listed in string2.

For example:

 # This will index a_b as a-b and ámo as amo
 TranslateCharacters _á -a

Trans lat eChar ac ters :ascii7: is a predefined set of characters that will translate eight bit
characters to ascii7 characters. Using the :ascii7: rule will translate "Ääç" to "aac". This means:
searching "Çelik", "çelik" or "celik" will all match the same word.

TranslateCharacters is done early in the indexing process, after converting HTML entities but before
splitting the input text into words based on WordCharacters. So characters you are translating from
do not need to be listed in word characters.

The same character translations take place when searching.

BumpPositionCounterCharacters *string*

When indexing Swish-e assigns a word position to each word. This enables phrase searching. There
may be cases where you would like to prevent phrase matching. The BumpPositionCounterCharac-
ters directive allows you to specify a set of characters that when found in the text will increment the
word position -- effectively preventing phrase matches across that character.

For example, if you have a tag:

 1 Dec 200596

4.1.5 Document Contents Directives

 <subjects>
 computer programming | apple computers
 </subjects>

You might want to prevent matching "programming apple" in that meta name.

 BumpPositionCounterCharacters |

There is no default, and you may list a string of characters.

DontBumpPositionOnEndTags *list of names*

DontBumpPositionOnStartTags *list of names*

Since metatags are typically separate data fields, the word position counter is automatically bumped
between metatags (actually, bumped when a start tag is found and when an end tag is found). This
prevents matching a phrase that spans more than one metaname. DontBumpPositionOnEndTags and
DontBumpPositionOnStartTags disables this feature for the listed metanames.

For example,

 <person>
 <first_name>
 William
 </first_name>
 <last_name>
 Shakespeare
 </last_name>
 <updated_date>
 April 25, 1999
 </updated_date>
 </person>

In the configuration file:

 DontBumpPositionOnEndTags first_name
 DontBumpPositionOnStartTags last_name

This configuration allows this phrase search

 -w ’person=("william shakespeare")’

but this phrase search will fail

 -w ’person=("shakespeare april")’

97 1 Dec 2005

4.1.5 Document Contents DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

4.1.6 Directives for the File Access method only

Some directives have different uses depending on the source of the documents. These directives are only
valid when using the File system method of indexing.

IndexOnly *list of file suffixes*

This directive specifies the allowable file suffixes (extensions) while indexing. The default is to
index all files specified in IndexDir .

 # Only index .html .htm and .q files
 IndexOnly .html .htm .q

IndexOnly checks that the file end in the characters listed. It does not check "extensions". IndexOnly
is tested right before FileRules is processed.

FollowSymLinks [yes|NO]

Put "yes" to follow symbolic links in indexing, else "no". Default is no.

 FollowSymLinks no
 FollowSymLinks yes

Note that when set to no extra stat(2) system calls must be made for each file. For large number
of files you may see a small reduction in indexing time by setting this to yes .

See also the -l switch in SWISH-RUN.

FileRules [type] [contains|is|regex] *regular expression*

FileMatch [type] [contains|is|regex] *regular expression*

FileRules and FileMatch are used to, respectively, exclude and include files and directories to index.
Since, by default, Swish-e indexes all files and recurses all directories (but see also FollowSymLinks)
you will typically only use FileRules to exclude files or directories. FileMatch is useful in a few
cases, for example, to override the behavior of IndexOnly. Some examples are included below.

Except for FileRules title ... , this feature is only available for file access method (-S fs),
which is the default indexing mode. Also, any pathname modification with ReplaceRules happens
after the check for FileRules. (It’s unlikely that you would exclude files with FileRules based on text
you added with ReplaceRules!)

The regular expression is a C regex.h extended regular expression. You may supply more than one
regular expression per line, or use separate directives. Preceding the regular expression with the word
"not" negates the match.

 1 Dec 200598

4.1.6 Directives for the File Access method only

The regular expression is compared against [type] as described below.

For historical reasons, you can specify contains or is . is simply forces the regular expression to
match at the start and end of the string (by internally prepending "^" and appending "$" to the regular
expression).

The regex option requires delimiter characters:

 FileRules title regex /^private/i

The only advantage of regex is if you want to do case insensitive matches, or simply like your
regular expressions to look like perl regular expressions. You must use matching delimiters; (), {},
and [], are not currently supported for no good reason other than laziness.

Use quotes (" or ’) around a pattern if it contains any white space. Note that the backslash character
becomes the escape character within quotes.

For example, these sets generate the same regular expressions.

 FileRules title is hello
 FileRules title contains ^hello$
 FileRules title regex /^hello$/

These all need quotes due to the included space character

 FileRules title is "hello there"
 FileRules title contains "^hello there$"
 FileRules title regex "!^hello there$!"

These show how the backslash must be doubled inside of quotes. Swish-e converts a double-back-
slash into a single backslash, and then passes that single onto the regular expression compiler.

 FileRules filename regex /\.pdf/
 FileRules filename regex "/\\.pdf/"

 FileRules filename regex !hello\\there! # need double for real backslash
 FileRules filename regex "!hello\\\\there!" # need double-double inside of quotes

Matching Types

The following types of match strings my be supplied:

 FileRules pathname
 FileRules dirname
 FileRules filename
 FileRules directory
 FileRules title

99 1 Dec 2005

4.1.6 Directives for the File Access method onlySWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 FileMatch pathname
 FileMatch filename
 FileMatch dirname
 FileMatch directory

pathname matches the regular expression against the current pathname. The pathname may or may
not be absolute depending on what you supplied to IndexDir.

Example:

 # Don’t index paths that contain private or hidden
 FileRules pathname contains (private|hidden)

 # Same thing
 FileRules pathname regex /(private|hidden)/

 # Don’t index exe files
 FileRules pathname contains \.exe$

dirname and filename split the path name by the last delimiter character into a directory name, and a
file name. Then these are compared against the patterns supplied. Directory names do not have a
trailing slash. All path names use the forward slash as a delimiter within Swish-e.

Example:

 # Same as last example - don’t index *.exe files.
 FileRules filename contains \.exe$

 # Don’t index any file called test.html files
 FileRules filename contains ^test\.html$

 # Same thing
 FileRules filename is test\.html

 # Don’t index any directories that contain "old" (/usr/local/myold/docs)
 FileRules dirname contains old

 # Don’t index any directories that contain the path segment "old" (/usr/local/old/foo)
 FileRules dirname contains /old/

 # Index only .htm, .html, plus any all-digit file names
 IndexOnly .htm .html
 FileMatch filename contains ^\d+$

 1 Dec 2005100

4.1.6 Directives for the File Access method only

 # Same as previous, but maybe a little slower
 FileRules filename regex not !\.(htm|html)$!
 FileMatch filename contains ^\d+$

Swish-e checks these settings in the order of path name, dirname , and file name, and
FileMatch patterns are checked before FileRules, in general. This allows you to exclude most files
with FileRules, yet allow in a few special cases with FileMatch. For example:

 # Exclude all files of .exe, .bin, and .bat
 FileRules filename contains \.(exe|bin|bat)$
 # But, let these two in
 FileMatch filename is baseball\.bat incoming_mail\.bin

 # Same, but as a single pattern
 FileMatch filename is (baseball\.bat|incoming_mail\.bin)

The direc tory type is somewhat unique. When Swish-e recurses into a directory it will compare
all the files in the directory with the pattern and then decide if that entire directory should or should
not be indexed (or recursed). Note that you are matching against file names in a directory -- and some
of those names may be directory names.

A FileRules direc tory match will cause Swish-e to ignore all files and sub-directories in the
current directory.

Warning: A match with FileMatch direc tory says to index everything in the *current* direc-
tory and ignore any FileRules for this directory.

Example:

 # Don’t index any directories (and sub directories) that contain
 # a file (or sub-directory) called "index.skip"
 FileRules directory contains ^index\.skip$

 # Don’t index directories that contain a .htaccess file.
 FileRules directory contains ^\.htaccess

Note: While processing directories, Swish-e will ignore any files or directories that begin with a dot
("."). You may index files or directories that begin with a dot by specifying their name with IndexDir
or -i .

title checks for a pattern match in an HTML title.

Example:

 FileRules title contains construction example pointers

101 1 Dec 2005

4.1.6 Directives for the File Access method onlySWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 # This example says to ignore case
 FileRules title regex "/^Internal document/i"

Note: FileRules title works for any input method (fs, prog, or http) that is parsed as HTML,
and where a title was found in the document.

In case all this seems a bit confusing, processing a directory happens in the following order.

First the directory name is checked:

 FileRules dirname - reject entire directory if matches

Next the directory is scanned and each file name (which might be the name of a sub-directory) is
checked:

 FileRules directory - reject entire dir if *any* files match
 FileMatch directory - accept entire dir if *any* files match

Then, unless FileMatch direc tory matched, each file is tested with FileMatch. A match says
to index the file without further testing (i.e. overrides FileRules and IndexOnly):

 FileMatch pathname \
 FileMatch dirname - file is accepted if any match
 FileMatch filename /

otherwise

 IndexOnly - file is checked for the correct file extension

 FileRules pathname \
 FileRules dirname - file is rejected if any match
 FileRules filename /

finally, the file is indexed.

Files (not directories) listed with IndexDir or -i are processed in a similar way:

 FileMatch pathname \
 FileMatch dirname - file is accepted if any match
 FileMatch filename /

otherwise, the file is rejected if it doesn’t have the correct extension or a FileRules matches.

 1 Dec 2005102

4.1.6 Directives for the File Access method only

 IndexOnly - file is checked for the correct file extension

 FileRules pathname \
 FileRules dirname - file is rejected if any match
 FileRules filename /

Note: If things are not indexing as you expect, create a directory with some test files and use the -T
regex trace option to see how file names are checked. Start with very simple tests!

4.1.7 Directives for the HTTP Access Method Only

The HTTP Access method is enabled by the "-S http" switch when indexing. It works by running a Perl
program called SwishSpider which fetches documents from a web server.

Only text files (content-type of "text/*") are indexed with the HTTP Access Method. Other document
types (e.g. PDF or MSWord) may be indexed as well. The SwishSpider will attempt to make use of the
SWISH::Filter module (included with the Swish-e distribution) to convert documents into a format that
Swish-e can index.

Note: The -S prog method of spidering (using spider.pl) can be a replacement for the -S http method. It
offers more configuration options and better spidering speed.

These directives below are available when using the HTTP Access Method of indexing.

MaxDepth *integer*

MaxDepth defines how many links the spider should follow before stopping. A value of 0 configures
the spider to traverse all links. The default is MaxDepth 0.

 MaxDepth 5

Note: The default was changed from 5 to 0 in release 2.4.0

Delay *seconds*

The number of seconds to wait between issuing requests to a server. This setting allows for more
friendly spidering of remote sites. The default is 5 seconds.

 Delay 1

Note: The default was changed from 60 to 5 seconds in release 2.4.0

TmpDir *path*

103 1 Dec 2005

4.1.7 Directives for the HTTP Access Method OnlySWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

The location of a writable temp directory on your system. The HTTP access method tells the Perl
helper to place its files in this location, and the -e switch causes Swish-e to use this directory while
indexing. There is no default.

 TmpDir /tmp/swish

If this directory does not exist or is not writable Swish-e will fail with an error during indexing.

Note, the environment variables of TMPDIR, TMP, and TEMP (in that order) will override this
setting.

SpiderDirectory *path*

The location of the Perl helper script called swishspider. If you use a relative directory, it is relative
to your directory when you run Swish-e, not to the directory that Swish-e is in. The default is the
location swishspider was installed. Normally this does not need to be set.

 SpiderDirectory /usr/local/swish

EquivalentServer *server alias*

Often times the same site may be referred to by different names. A common example is that often
http://www.some-server.com and http://some-server.com are the same. Each line should have a list of
all the method/names that should be considered equivalent. Multiple EquivalentServer directives may
be used. Each directive defines its own set of equivalent servers.

 EquivalentServer http://library.berkeley.edu http://www.lib.berkeley.edu
 EquivalentServer http://sunsite.berkeley.edu:2000 http://sunsite.berkeley.edu

4.1.8 Directives for the prog Access Method Only

This section details the directives that are only available for the "prog" document source feature of
Swish-e. The "prog" access method runs an external program that "feeds" documents to Swish-e. This
allows indexing and filtering of documents from any source.

See prog - general purpose access method in the SWISH-RUN man page for more information.

A number of example programs for use with the "prog" access method are provided in the prog-bin direc-
tory. Please see those example if you have questions about implementing a "prog" input program.

SwishProgParameters *list of parameters*

This is a list of parameters that will be sent to the external program when running with the "prog"
document source method.

 1 Dec 2005104

4.1.8 Directives for the prog Access Method Only

http://www.some-server.com/
http://some-server.com/
http://library.berkeley.edu/
http://www.lib.berkeley.edu/
http://sunsite.berkeley.edu:2000/
http://sunsite.berkeley.edu/

 SwishProgParameters /path/to/config hello there
 IndexDir /path/to/program.pl

Then running:

 swish-e -c config -S prog

Swish-e will execute /path/to/program.pl and pass /path/to/config hello there
as three command line arguments to the program. This directive makes it easy to pass settings from
the Swish-e configuration file to the external program.

For example, the spider.pl program (included in the prog-bin directory) uses the SwishProg-
Parameters to specify what file to read for configuration information.

 SwishProgParameters spider.config
 IndexDir ./spider.pl

The spider.pl program also has a default action so you can avoid using a configuration file:

 SwishProgParameters default http://www.swishe.org/ http://some.other.site/
 IndexDir ./spider.pl

And the spider program will use default settings for spidering those sites.

Swish-e can read documents from standard input, so another way to run an external program with
parameters is:

 ./spider.pl spider.conf | ./swish-e -S prog -i stdin

Notes when using MS Windows

You should use unix style path separators to specify your external program. Swish will convert forward
slashes to backslashes before calling the external program. This is only true for the program name speci-
fied with IndexDir or the -i command line option.

In addition, Swish-e will make sure the program specified actually exists, which means you need to use
the full name of the program.

For example, to run the perl spider program spider.pl you would need a Swish-e configuration file such
as:

 IndexDir e:/perl/bin/perl.exe
 SwishProgParameters prog-bin/spider.pl default http://swish-e.org

105 1 Dec 2005

4.1.8 Directives for the prog Access Method OnlySWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

http://www.swishe.org/
http://some.other.site/
http://swish-e.org/

and run indexing with the command:

 swish-e -c swish.cfg -S prog -v 9

The IndexDir command tells Swish-e the name of the program to run. Under unix you can just specify the
name of the script, since unix will figure out the program from the first line of the script.

The SwishProgParameters are the parameters passed to the program specified by IndexDir (perl.exe in this
case). The first parameter is the perl script to run (prog-bin/spider.pl). Perl passes the rest of the parame-
ters directly to the perl script. The second parameter default tells the spider.pl program to use default
settings for spidering (or you could specify a spider config file -- see perldoc spider.pl for
details), and lastly, the URL is passed into the spider program.

4.1.9 Document Filter Directives

Internally, Swish-e knows how to parse only text, HTML, and XML documents. With "filters" you can
index other types of documents. For example, if all your web pages are in gzip format a filter can uncom-
press these on the fly for indexing.

You may wish to read the Swish-e FAQ question on filtering before continuing here. How Do I filter
documents?

There are two suggested methods for filtering.

4.1.9.1 Filter ing with SWISH::Filter

The Swish-e distribution includes a Perl module called SWISH::Filter and individual filters located in the
filters directory. This system uses plug-in filters to extend the types of documents that Swish-e can index.
The plug-in filters do not actually do the filtering, but rather provide a standard interface for accessing
programs that can filter or convert documents. The programs that do the filtering are not part of the
Swish-e distribution; they must be downloaded and installed separately.

The advantage of this method is that new filtering methods can be installed easily.

This system is designed to work with the -S http and -prog methods, but may also be used with the File-
Filter feature and -S fs indexing method. See $prefix/share/doc/swish-e/examples/filter-bin/swish_filter.pl
for an example.

See the filters/README file for more information.

4.1.9.2 Filter ing with the FileFilter feature

A filter is an external program that Swish-e executes while processing a document of a given type.
Swish-e will execute the filter program for each file that matches the file suffix (extension) set in the File-
Filter or FileFilter Match directives. FileFilter Match matches using regular expressions and is described
below.

 1 Dec 2005106

4.1.9 Document Filter Directives

Filters may be used with any type of input method (i.e. -S fs, -S http, or -S prog). But because

Swish-e calls the external program passing as default arguments:

$0

the name of the filter program

$1

the physical path name of the file to read. This may be a temporary file location if indexing by the
http method.

$2

When indexing under the file system this will be the same as $1 (the path to the source file), but
when indexing under the http method this will be the URL of the source document.

Swish-e can also pass other parameters to the filter program. These parameters can be defined using the
FileFilter or FileFilter Match directives. See Filter Options below.

The filter program must open the file, process its contents, and return it to Swish-e by printing to
STDOUT.

Note that this can add a significant amount of time to the indexing process if your external program is a
perl or shell script. If you have many files to filter you should consider writing your filter in C instead of a
shell or perl script, or using the "prog" Access Method.

Filter Dir *path-to-directory*

This is the path to a directory where the filter programs are stored. Swish-e looks in this directory to
find the filter specified in the FileFilter directive. If this directive is omitted, you have to specify the
full path to the filterscript on each FileFilter directive.

This feature does *not* apply to the FileFilterMatch directive.

Example:

 FilterDir /usr/local/swish/filters

FileFilter *suffix* "filter-prog" ["filter-options"]

This maps file suffix (extension) to a filter program. If filter-prog starts with a directory delimiter
(absolute path), Swish-e doesn’t use the FilterDir settings, but uses the given filter-prog path directly.

Filter options:

107 1 Dec 2005

4.1.9 Document Filter DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

Filter options are a string passed as arguments to the filter-prog. Filter options can contain variables,
replaced by Swish-e. If you omit filter-options Swish-e will use default parameters for the options
listed above.

 Default: "’%p’ ’%P’"
 Which means: pass "workfile path" and "documentfile path" to filter (each quoted).

Variables in filter options:

 %% = %
 %P = Full document pathname (e.g. URL, or path on filesystem)
 %p = Full pathname to work file (maybe a tmpfile or the real document path on filesystem)
 %F = Filename stripped from full document pathname
 %f = Filename stripped from "work" pathname
 %D = Directoryname stripped from full document pathname
 %d = Directoryname stripped from full "work" pathname

Examples of strings passed:

 %P = document pathname: http://myserver/path1/mydoc.txt
 %p = work pathname: /tmp/tmp.1234.mydoc.txt
 %F = mydoc.txt
 %f = tmp.1234.mydoc.txt
 %D = http://myserver/path1
 %d = /tmp

Important hint for security:

When using variable substitution, use quotes to ensure filename integrity.

 e.g. "’%f’" --> ’file name with spaces.doc’.

If you don’t use this, your system security may be compromised, or filtering may not work for these
files.

Notes when using MS Windows

Windows uses double quotes to escape shell metacharacters, so reverse the quotes in the examples
above. e.g.:

 ’"%f"’ --> "file name with spaced.doc"

You can specify the filter program using forward slashes (unix style). Swish will convert the slashes
to backslashes before running your program.

 FileFilter .mydoc c:/some/path/mydocfilter.exe ’-d "%d" -example -url "%P" "%f"’

 1 Dec 2005108

4.1.9 Document Filter Directives

http://myserver/path1/mydoc.txt
http://myserver/path1

Examples of filters:

 FileFilter .doc /usr/local/bin/catdoc "-s8859-1 -d8859-1 ’%p’"
 FileFilter .pdf pdftotext "’%p’ -"
 FileFilter .html.gz gzip "-c ’%p’"
 FileFilter .mydoc "/some/path/mydocfilter" "-d ’%d’ -example -url ’%P’ ’%f’"

The above examples are running a binary filter program. For more complicated filtering needs you
may use a scripting language such as Perl or a shell script. Here’s some examples of calling a shell
and perl script:

 FileFilter .pdf pdf2html.sh
 FileFilter .ps ghostscript-filter.pl

Using a scripting language (or any language that has a large startup cost) can greatly increase the
indexing time. For small indexing jobs, this may not be an issue, but for large collections of files that
require processing by a scripting language, you may be better off using the -S prog access method
where the script will only be compiled once, instead of for each document.

Filters are probably easier to write than a -S prog program. Which you decide to use depends on
your requirements. Examples of filter scripts can be found in the filter-bin directory, and examples of
-S prog programs can be found in the prog-bin directory.

FileFilter Match *filter-prog* *filter-options* *regex* [*regex* ...]

This is similar to FileMatch except uses regular expressions to match against the file name.
filter-prog is the path to the program. Unlike FileFilter this does not use the FilterDir option. Also
unlike FileFilter you must specify the *filter-options*.

Examples:

 FileFilterMatch ./pdftotext "’%p’ -" /\.pdf$/

Note that will also match a file called ".pdf", so you may want to use something that requires a file-
name that has more than just an extension. For example:

 FileFilterMatch ./pdftotext "’%p’ -" /.\.pdf$/

To specify more than one extension:

 FileFilterMatch ./check_title.pl "%p" /\.html$/ /\.htm$/

Or a few ways to do the same thing:

109 1 Dec 2005

4.1.9 Document Filter DirectivesSWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

 FileFilterMatch ./check_title.pl %p /\.(html|html)$/
 FileFilterMatch ./check_title.pl %p /\.html?$/

And to ignore case:

 FileFilterMatch ./check_title.pl %p /\.html?$/i

You may also precede an expression with "not" to negate regular expression that follow. For
example, to match files that do not have an extension:

 FileFilterMatch ./convert "%p %P" not /\..+$/

4.2 Document Info
$Id: SWISH-CONFIG.pod,v 1.81 2004/10/25 13:57:17 karman Exp $

.

 1 Dec 2005110

4.2 Document Info

5 SWISH-RUN - Running Swish-e and Command
Line Switches

111 1 Dec 2005

5 SWISH-RUN - Running Swish-e and Command Line SwitchesSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

5.1 OVERVIEW
The Swish-e program is controlled by command line arguments (called switches). Often, it is run manu-
ally from a shell (command prompt), or from a program such as a CGI script that passes the command line
arguments to swish.

Note: A number of the command line switches may be specified in the Swish-e configuration file speci-
fied with the -c command line argument. Please see SWISH-CONFIG for a complete description of
available configuration file directives.

There are two basic operating modes of Swish-e: indexing and searching. There are command line argu-
ments that are unique to each mode, and others that apply to both (yet may have different meaning
depending on the operating mode). These command line arguments are listed below, grouped by:

INDEXING -- describes the command line arguments used while indexing.

SEARCHING -- lists the command line arguments used while searching.

OTHER SWITCHES -- lists switches that don’t apply to searching or indexing.

Beginning with Swish-e version 2.1, you may embed its search engine into your applications. Please see
SWISH-LIBRARY.

5.2 INDEX ING
Swish-e indexing is initiated by passing command line arguments to swish. The command line arguments
used for searching are described in SEARCHING. Also, see SWISH-SEARCH for examples of searching
with Swish-e.

Swish-e usage:

 swish-e [-i dir file ...] [-c file] [-f file] [-l] \
 [-v (num)] [-S method(fs|http|prog)] [-N path]

The -h switch (help) will list the available Swish-e command line arguments:

 swish-e -h

Typically, most if not all indexing settings are placed in a configuration file (specified with the -c
switch). Once the configuration file is setup indexing is initiated as:

 swish-e -c /path/to/config/file

 1 Dec 2005112

5.1 OVERVIEW

See SWISH-CONFIG for information on the configuration file.

Security Note: If the swish binary is named swish-search then swish will not allow any operation that
would cause swish to write to the index file.

When indexing it may be advisable to index to a temporary file, and then after indexing has successfully
completed rename the file to the final location. This is especially important when replacing an index that
is currently in use.

 swish-e -c swish.config -f index.tmp
 [check return code from swish or look for err: output]
 mv index.tmp index.swish-e

5.2.1 Indexing Command Line Arguments

-i *directories and/or files* (input file)

This specifies the directories and/or files to index. Directories will be indexed recursively. This is
typically specified in the configuration file with the IndexDir directive instead of on the command
line. Use of this switch overrides the configuration file settings.

-S [fs|http|prog] (document source/access mode)

This specifies the method to use for accessing documents to index. Can be either fs for local indexing
via the file system (the default), http for spidering, or prog for reading documents from an external
program.

Located in the conf directory are example configuration files that demonstrate indexing with the
different document source methods.

See the SWISH-FAQ for a discussion on the different indexing methods, and the difference between
spidering with the http method vs. using the file system method.

fs - file system

The fs method simply reads files from a local (or networked) drive. This is the default method if
the -S switch is not specified. See SWISH-CONFIG for configuration directives specific to the
fs method.

http - spider a web server

The http method is used to spider web servers. It uses an included helper program called swish-
spider. See SWISH-CONFIG for configuration directives specific to the http method.

Security Note: Under Windows swish passes the URLs fetched from remote documents through
the shell (swish uses the system() command for running swishspider under Windows), and
this may be considered an additional security risk.

113 1 Dec 2005

5.2.1 Indexing Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

The http method is deprecated (or at least not very well appreciated). Consider using the prog
method described below for spidering. There’s a spider program available in the prog-bin direc-
tory for use with the prog method. Here’s a number of limi tation with this method that are
solved with the prog method:

swishspider only spiders standard links. Frames and other links are not
followed.

By default, this method of spidering only indexes files that have a content type of "text/*"
(e.g. text/plain, text/html, text/xml). You should use DefaultContents and IndexContents to
map file extensions to parsers used by swish (e.g. Index Contents HTML* .html
.htm), but this will fail where a document does not have a file extension.

Swish-e’s FileFilter directive can be used with the http access method, although it requires
a separate process (in addition to the swsihspider process) for each document filtered.

The SWISH::Filter modules can be used with the swishspider program. SWISH::Filter
provides a general purpose filtering system (see SWISH::Filter documentation). To use
SWISH::Filter set PERL5LIB to point to the location of the SWISH module name space
(typically /usr/local/lib/swish-e under Unix). For example:

 export PERL5LIB=/usr/local/lib/swish-e # bash, bourne shells
 setenv PERL5LIB /usr/local/lib/swish-e # csh, tcsh

or under Windows

 set PERL5LIB=c:\program files\swish-e2.4\lib\swish-e

SWISH::Filter is not enabled by default due to the overhead of loading the modules for
every document fetched.

The Swish-e distribution includes perl modules in the SWISH::Filters::* namespace to
make converting non-text documents into a format that Swish-e can parse easy. As
mentioned above, the helper script swishspider will use these modules if can be found via
PERL5LIB. These modules only provide an interface to programs that do the conversion.
For example, you will need to download and install the "catdoc" program to convert
MSWord documents into text for indexing. Please see filters/README to see how to use
this filter system.

prog - general purpose access method

The prog method is new to Swish-e version 2.2. It’s designed as a general purpose method to
feed documents to swish from an external program.

For example, the external program can read a database (e.g. MySQL), spider a web server, or
convert documents from one format to another (e.g. pdf to html). Or, you can simply use it to
read the files of the file system (like -S fs), yet provide you with full control of what files are

 1 Dec 2005114

5.2.1 Indexing Command Line Arguments

indexed.

The external program name to run is passed to swish either by the IndexDir directive, or via the
-i option.

The program specified should be an absolute path as swish-e will attempt to stat() the
program to make sure it exists. Swish does this to help in error reporting.

If the program specified with -i or IndexDir is not an absolute path (i.e. does not include "/")
then swish-e will append the "libexecdir" directory defined during configuration. Typically,
libexecdir is set to "$prefix/lib/swish-e" (/usr/local/lib/swish-e), but is platform and installation
dependent. Running swish-e -h will report the directory.

For example, the -S prog program "spider.pl" is a Perl helper program for use with -S prog and
is installed in libexecdir.

 IndexDir spider.pl
 SwishProgParameters default http://localhost/index.html

and swish-e will find spider.pl in libexecdir.

Additional parameters may be passed to the external program via the SwishProgParameters
directive. In the example above swish-e will pass two parameters to spider.pl, "default" and
"http://localhost/index.html".

A special name "stdin" may be used with -i or IndexDir which tells swish to read from stan-
dard input instead of from an external program. See example below.

The external program prints to standard output (which swish captures) a set of headers followed
by the content of the file to index. The output looks similar to an email message or a HTTP
document returned by a web server in that it includes name/value pairs of headers, a blank line,
and the content.

The content length is determined by a content-length header supplied to swish by the program;
there is no "end of record" character or flag sent between documents. Therefore, it is critical that
the content-length header is correct. This is a common source of errors.

One advantage of this method (over using filters, for example) is that the external program is
run only once for the entire indexing job, instead of once for every document. This avoids
forking and creating a new process for every document, and makes a huge difference when your
external program is something like perl that has a large startup cost.

Here’s a simple example written in Perl:

 #!/usr/local/bin/perl -w
 use strict;

115 1 Dec 2005

5.2.1 Indexing Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

http://localhost/index.html

 # Build a document
 my $doc = <<EOF;
 <html>
 <head>
 <title>Document Title</title>
 </head>
 <body>
 This is the text.
 </body>
 </html>
 EOF

 # Prepare the headers for swish
 my $path = ’Example.file’;
 my $size = length $doc;
 my $mtime = time;

 # Output the document (to swish)
 print <<EOF;
 Path-Name: $path
 Content-Length: $size
 Last-Mtime: $mtime
 Document-Type: HTML*

 EOF

 print $doc;

The external program passes to swish a header. The header is separated from the body of the
document with a blank line. The available headers are:

Path-Name:

This is the name of the file you are indexing. This can be any string, so for example it
could be an ID of a record in a database, a URL or a simple file name.

This header is required.

Content-Length:

This header specifies the length in bytes of the document that follows the header. This
length must be exactly the length of the document -- do not make the mistake of adding an
extra line feed at the end of the document.

This header is required.

 1 Dec 2005116

5.2.1 Indexing Command Line Arguments

Last-Mtime:

Thi parameter is the last modification time of the file, and must be a time stamp (seconds
since the Epoch on your platform).

This header is not required.

Document-Type:

You may override swish’s determination of document type (Index con tents) by using
the Document -Type: header. The document type is used to select which parser Swish-e
uses to parse the document’s contents.

For example, a spider program might map the content-type returned from a web server to
one of the types Swish-e understands. For example,

 my $doc_type = ’HTML*’ if $response->content_type =~ m!text/html!’

This header is not required.

The above example program only returns one document and exits, which is not very useful.
Normally, your program would read data from some source, such as files or a database, format
as XML, HTML, or text, and pass them to swish, one after another. The Content-Length:
header tells swish where each document ends -- there is not any special "end of record" charac-
ter or marker.

To index with the above example you need to make sure that the program is executable (and that
the path to perl is correct), and then call swish telling to run in prog mode, and the name of the
program to use for input.

 % chmod 755 example.pl
 % ./swish-e -S prog -i ./example.pl

Programs can and should be tested prior to running swish. For example:

 % ./example.pl > test.out

A few more useful example programs are provided in the swish-e distribution located in the
prog-bin directory. Some include documentation:

 % cd prog-bin
 % perldoc spider.pl

Others are small examples that include comments:

117 1 Dec 2005

5.2.1 Indexing Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

 % cd prog-bin
 % less DirTree.pl

The spider.pl program can be used as a replacement for the -S http method. It is far more
feature-rich and offers much more control over indexing.

If you use the special program name "stdin" with -i or IndexDir then swish-e will read from
standard input instead of from a program. For example:

 % ./example.pl --count=1000 /path/to/data | ./swish-e -S prog -i stdin

This is basically the same as using a swish-e configuration file of:

 SwishProgParameters --count=1000 /path/to/data
 IndexDir ./example.pl

in a config file and running

 % ./swish-e -S prog -c swish.conf

This gives an easy way to run swish without a configuration file with a -S prog program that
requires parameters. It also means you can capture data to a file and then index more once with
the same data:

 % ./example.pl /path/to/data --count=1000 > docs.txt
 % cat docs.txt | ./swish-e -S prog -i stdin -c normal_index
 % cat docs.txt | ./swish-e -S prog -i stdin -c fuzzy_index

Using "stdin" might also be useful for programs that call swish (instead of swish calling the
program).

(The reason "stdin" is used instead of the more common "-" dash is due to the rotten way swish
parses the command line. This should be fixed in the future.)

The prog method bypasses some of the configuration parameters available to the file system
method -- settings such as IndexOnly, FileRules, FileMatch and FollowSymLinks are ignored
when using the prog method. It’s expected that these operations are better accomplished in the
external program before passing the document onto swish. In other words, when using the prog
method, only send the documents to swish that you want indexed.

You may use swish’s filter feature with the prog method, but performance will be better if you
run filtering programs from within your external program. See also filters/README for an
example how to easily add document converstion and filtering into your Perl-based programs.

 1 Dec 2005118

5.2.1 Indexing Command Line Arguments

Notes when using -S prog on MS Windows

Windows does not use the shebang (#!) line of a program to determine the program to run. So,
when running, for example, a perl program you may need to specify the perl.exe binary as the
program, and use the SwishProgParameters to name the file.

 IndexDir e:/perl/bin/perl.exe
 SwishProgParameters read_database.pl

Swish will replace the forward slashes with backslashes before running the command specified
with IndexDir. Swish uses the popen(3) command which passes the command through the
shell.

-f *indexfile* (index file)

If you are indexing, this specifies the file to save the generated index in, and you can only specify
one file. See also IndexFile in the configuration file.

If you are searching, this specifies the index files (one or more) to search from. The default index file
is index.swish-e in the current directory.

-c *file ...* (configuration files)

Specify the configuration file(s) to use for indexing. This file contains many directives that
control how Swish-e proceeds. See SWISH-CONFIG for a complete listing of configuration file
directives.

Example:

 swish-e -c docs.conf

If you specify a directory to index, an index file, or the verbose option on the command-line, these
values will override any specified in the configuration file.

You can specify multiple configuration files. For example, you may have one configuration file that
has common site-wide settings, and another for a specific index.

Examples:

 1) swish-e -c swish-e.conf
 2) swish-e -i /usr/local/www -f index.swish-e -v -c swish-e.conf
 3) swish-e -c swish-e.conf stopwords.conf

1. The settings in the configuration file will be used to index a site.

119 1 Dec 2005

5.2.1 Indexing Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

2. These command-line options will override anything in the configuration file.

3. The variables in swish-e.conf will be read, then the variable in stopwords.conf will be read.
Note that if the same variables occur in both files, older values may be written over.

-e (economy mode)

For large sites indexing may require more RAM than is available. The -e switch tells swish to use
disk space to store data structures while indexing, saving memory. This option is recommended if
swish uses so much RAM that the computer begins to swap excessively, and you cannot increase
available memory. The trade-off is slightly longer indexing times, and a busy disk drive.

-l (symbolic links)

Specifying this option tells swish to follow symbolic links when indexing. The configuration file
value FollowSymLinks will override the command-line value.

The default is not to follow symlinks. A small improvement in indexing time my result from enabling
FollowSymLinks since swish does not need to stat every directory and file processed to determine if
it is a symbolic link.

-N path (index only newer files)

The -N option takes a path to a file, and only files newer than the specified file will be indexed. This
is helpful for creating incremental indexes -- that is, indexes that contain just files added since the last
full index was created of all files.

Example (bad example)

 swish-e -c config.file -N index.swish-e -f index.new

This will index as normal, but only files with a modified date newer than index.swish-e will be
indexed.

This is a bad example because it uses index.swish-e which one might assume was the date of last
indexing. The problem is that files might have been added between the time indexing read the direc-
tory and when the index.swish-e file was created -- which can be quite a bit of time for very large
indexing jobs.

The only solution is to prevent any new file additions while full indexing is running. If this is impos-
sible then it will be slightly better to do this:

Full indexing:

 touch indexing_time.file
 swish-e -c config.file -f index.tmp
 mv index.tmp index.full

 1 Dec 2005120

5.2.1 Indexing Command Line Arguments

Incremental indexing:

 swish-e -c config.file -N indexing_time.file -f index.tmp
 mv index.tmp index.incremental

Then search with

 swish-e -w foo -f index.full index.incremental

or merge the indexes

 swish-e -M index.full index.incremental index.tmp
 mv index.tmp index.swish-e
 swish-e -w foo

-v [0|1|2|3] (verbosity level)

The -v option can take a numerical value from 0 to 3. Specify 0 for completely silent operation and
3 for detailed reports.

If no value is given then 1 is assumed. See also IndexReport in the configuration file.

Warnings and errors are reported regardless of the verbosity level. In addition, all error and warnings
are written to standard out. This is for historical reasons (many scripts exist that parse standard out
for error messages).

5.3 SEARCHING
The following command line arguments are available when searching with Swish-e. These switches are
used to select the index to search, what fields to search, and how and what to print as results.

This section just lists the available command line arguments and their usage. Please see SWISH-SEARCH
for detailed searching instructions.

Warning : If using Swish-e via a CGI interface, please see CGI Danger!

Security Note: If the swish binary is named swish-search then swish will not allow any operation that
would cause swish to write to the index file.

5.3.1 Searching Command Line Arguments

-w *word1 word2 ...* (query words)

This performs a case-insensitive search using a number of keywords. If no index file to search is
specified (via the -f switch), swish-e will try to search a file called index.swish-e in the current
directory.

121 1 Dec 2005

5.3 SEARCHINGSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

 swish-e -w word

Phrase searching is accomplished by placing the quote delimiter (a double-quote by default) around
the search phrase.

 swish-e -w ’word or "this phrase"’

Search would should be protected from the shell by quotes. Typically, this is single quotes when
running under Unix.

Under Windows command.com you may not need to use quotes, but you will need to backslash the
quotes used to delimit phrases:

 swish-e -w \"a phrase\"

The phrase delimiter can be set with the -P switch.

The search may be limited to a MetaName. For example:

 swish-e -w meta1=(foo or baz)

will only search within the meta1 tag.

Please see SWISH-SEARCH for a description of MetaNames

-f *file1 file2 ...* (index files)

Specifies the index file(s) used while searching. More than one file may be listed, and each file
will be searched. If no -f switch is specified then the file index.swish-e in the current directory will
be used as the index file.

-m *number* (max results)

While searching, this specifies the maximum number of results to return. The default is to return all
results.

This switch is often used in conjunction with the -b switch to return results one page at a time
(strongly recommended for large indexes).

-b *number* (beginning result)

Sets the begining search result to return (records are numbered from 1). This switch can be used with
the -m switch to return results in groups or pages.

 1 Dec 2005122

5.3.1 Searching Command Line Arguments

Example:

 swish-e -w ’word’ -b 1 -m 20 # first ’page’
 swish-e -w ’word’ -b 21 -m 20 # second ’page’

-t HBthec (context searching)

The -t option allows you to search for words that exist only in specific HTML tags. Each character
in the string you specify in the argument to this option represents a different tag in which to search
for the word. H means all HEAD tags, B stands for BODY tags, t is all TITLE tags, h is H1 to H6
(header) tags, e is emphasized tags (this may be B, I, EM, or STRONG), and c is HTML comment
tags

search only in header (<H*>) tags

 swish-e -w word -t h

-d *string* (delimiter)

Set the delimiter used when printing results. By default, Swish-e separates the output fields by a
space, and places double-quotes around the document title. This output may be hard to parse, so it is
recommended to use -d to specify a character or string used as a separator between fields.

The string dq means "double-quotes".

 swish-e -w word -d , # single char
 swish-e -w word -d :: # string
 swish-e -w word -d ’"’ # double quotes under Unix
 swish-e -w word -d \" # double quotes under Windows
 swish-e -w word -d dq # double quotes

The following control characters may also be specified: \t \r \n \f .

Warning: This string is passed directly to sprintf() and therefore exposes a securty hole. Do not
allow user data to set -d format strings directly.

-P *character*

Sets the delimiter used for phrase searches. The default is double quotes " .

Some examples under bash: (be careful about you shell metacharacters)

 swish-e -P ^ -w ’title=^words in a phrase^’
 swish-e -P \’ -w "title=’words in a pharse"’

123 1 Dec 2005

5.3.1 Searching Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

-p *prop erty1 property2 ...* (display properties)

This causes swish to print the listed property in the search results. The properties are returned in the
order they are listed in the -p argument.

Properties are defined by the ProperNames directive in the configuration file (see SWISH-CONFIG)
and properties must also be defined in MetaNames. Swish stores the text of the meta name as a
property, and then will return this text while searching if this option is used.

Properties are very useful for returning data included in a source documnet without having to re-read
the source document while searching. For example, this could be used to return a short document
description. See also see Document Summeries and PropertyNames in SWISH-CONFIG.

To return the subject and category properties while indexing.

 swish-e -w word -p subject category

Properties are returned in double quotes. If a property contains a double quote it is HTML escaped
("). See the -x switch for a more advanced method of returning a list of properties.

NOTE: it is necessary to have indexed with the proper PropertyNames directive in the user config
file in order to use this option.

-s *prop erty [asc|desc] ...* (sort)

Normally, search results are printed out in order of relevancy, with the most relevant listed first. The
-s sort switch allows you to sort results in order of a specified property, where a property was
defined using the MetaNames and PropertyNames directives during indexing (see
SWISH-CONFIG).

The string passed can include the strings asc and desc to specify the sort order, and more than one
property may be specified to sort on more than one key.

Examples:

sort by title property ascending order

 -s title

sort descending by title, ascending by name

 -s title desc name asc

Note: Swish limits sort keys to 100 characters. This limit can be changed by changing
MAX_SORT_STRING_LEN in src/config.h and rebuilding swish-e.

 1 Dec 2005124

5.3.1 Searching Command Line Arguments

-L limit to a range of property values (Limit)

This is an experimental feature!

The -L switch can be used to limit search results to a range of property values

Example:

 swish-e -w foo -L swishtitle a m

finds all documents that contain the word foo , and where the document’s title is in the range of a to
m, inclusive. By default, the case of the property is ignored, but this can be changed by using Proper-
tyNamesCompareCase configuation directive.

Limit ing may be done with user-defined properties, as well.

For example, if you indexed documents that contain a created timestamp in a meta tag:

 <meta name="created_on" content="982648324">

Then you tell Swish that you have a property called created_on , and that it’s a timestamp.

 PropertyNamesDate created_on

After indexing you will be able to limit documents to a range of timestamps:

 -w foo -L created_on 946684800 949363199

will find documents containing the word foo and that have a created_on date from the start of Jan 1,
2000 to the end of Jan 31, 2000.

Note: swish currently does not parse dates; Unix timestamps must be used.

Two special formats can be used:

 -L swishtitle <= m
 -L swishtitle >= m

Finds titles less than or equal, or grater than or equal to the letter m.

This feature will not work with swishrank or swishdb file properties.

This feature takes advantages of the pre-sorted tables built by swish during indexing to make this
feature fast while searching. You should see in the indexing output a line such as:

125 1 Dec 2005

5.3.1 Searching Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

 6 properties sorted.

That indicates that six pre-sorted tables were built during indexing. By default, all properties are
presorted while indexing. What properties are pre-sorted can be controlled by the configuration
parameter PreSortedIndex.

Using the -L switch on a property that was not pre-sorted will still work, but may be much slower
during searching.

Note that the PropertyNamesSortKeyLength setting is used for sorting properties. Using too small a
PropertyNamesSortKeyLength could result in -L selecting the wrong properties due to incomplete
sorting.

This is an experimental feature, and its use and interface are subject to change.

-x formatstring (extended output format)

The -x switch defines the output format string. The format string can contain plain text and property
names (including swish-defined internal property names) and is used to generate the output for every
result. In addition, the output format of the property name can be controlled with C-like printf format
strings. This feature overrides the cmdline switches -d and -p , and a warning will be generated if
-d or -p are used with -x .

Warning: The format string (fmt) is passed directly to sprintf() and therefore exposes a securty
hole. Do not allow user data to set -x format strings directly.

For example, to return just the title, one per line, in the search results:

 swish-e -w ... -x ’<swishtitle>\n’ ...

Note: the \n may need to be protected from your shell.

See also ResultExtFormatName for a way to define named format strings in the swish configuration
file.

Format of "format string":

 "text<propertyname>text<propertyname fmt=propfmtstr>text..."

Where propertyname is:

the name of a user property as specified with the config file directive "PropertyNames"

the name of a swish Auto property (see below). These properties are defined automatically by
swish -- you do not need to specify them with PropertyNames directive. (This may change in the
future.)

 1 Dec 2005126

5.3.1 Searching Command Line Arguments

propertynames must be placed within "<" and ">".

User properties:

Swish-e allows you to specify certain META tags within your documents that can be used as docu-
ment properties. The contents of any META tag that has been identified as a document property can
be returned as part of the search results. Doucment properties must be defined while indexing using
the PropertyNames configuration directive (see SWISH-CONFIG).

Examples of user-defined PropertyNames:

 <keywords>
 <author>
 <deliveredby>
 <reference>
 <id>

Auto properties:

Swish defines a number of "Auto" properties for each document indexed. These are available for
output when using the -x format.

 Name Type Contents
 -------------- ------- --
 swishreccount Integer Result record counter
 swishtitle String Document title
 swishrank Integer Result rank for this hit
 swishdocpath String URL or filepath to document
 swishdocsize Integer Document size in bytes
 swishlastmodified Date Last modified date of document
 swishdescription String Description of document (see:StoreDescription)
 swishdbfile String Path of swish database indexfile

The Auto properties can also be specified using shortcuts:

 Shortcut Property Name
 -------- --------------
 %c swishreccount
 %d swishdescription
 %D swishlastmodified
 %I swishdbfile
 %p swishdocpath
 %r swishrank
 %l swishdocsize
 %t swishtitle

For example, these are equivalent:

127 1 Dec 2005

5.3.1 Searching Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

 -x ’<swishrank>:<swishdocpath>:<swishtitle>\n’
 -x ’%r:%p:%t\n’

Use a double percent sign "%%" to enter a literal percent sign in the output.

Formatstrings of properties:

Properties listed in an -x format string can include format control strings. These "propertyformats"
are used to control how the contents of the associated property are printed. Property formats are used
like C-language printf formats. The property format is specified by including the attribute "fmt"
within the property tag.

Format strings cannot be used with the "%" shortcuts described above.

General syntax:

 -x ’<propertyname fmt="propfmtstr">’

where subfmt controls the output format of prop er ty name.

Examples of property format strings:

 date type: <swishlastmodified fmt="%d.%m.%Y">
 string type: <swishtitle fmt="%-40.35s">
 integer type: <swishreccount fmt=/%8.8d/>

Please see the manual pages for strf time (3) and sprintf(3) for an explanation of format
strings. Note: some versions of strftime do not offer the %s format string (number of seconds since
the Epoch), so swish provides a special format string "%ld" to display the number of seconds since
the Epoch.

The first character of a property format string defines the delimiter for the format string. For
example,

 -x "<author fmt=[%20s]> ...\n"
 -x "<author fmt=’%20s’> ...\n"
 -x "<author fmt=/%20s/> ...\n"

Standard predefined formats:

If you ommit the sub-format, the following formats are used:

 String type: "%s" (like printf char *)
 Integer type: "%d" (like printf int)
 Float type: "%f" (like printf double)
 Date type: "%Y-%m-%d %H:%M:%S" (like strftime)

 1 Dec 2005128

5.3.1 Searching Command Line Arguments

Text in "format string" or "propfmt str":

Text will be output as-is in format strings (and property format strings). Special characters can be
escaped with a backslash. To get a new line for each result hit, you have to include the
Newline-Character "\n" at the end of "fmtstr".

 -x "<swishreccount>|<swishrank>|<swishdocpath>\n"
 -x "Count=<swishreccount>, Rank=<swishrank>\n"
 -x "Title=\<b\><swishtitle>\</b\>"
 -x ’Date: <swishlastmodified fmt="%m/%d/%Y">\n’
 -x ’Date in seconds: <swishlastmodified fmt=/%ld/>\n’

Control/Escape charcters:

you can use C-like control escapes in the format string:

 known controls: \a, \b, \f, \n, \r, \t, \v,
 digit escapes: \xhexdigits \0octaldigits
 character escapes: \anychar

Example,

 swish -x "%c\t%r\t%p\t\"<swishtitle fmt=/%40s/>\"\n"

Examples of -x format strings:

 -x "%c|%r|%p|%t|%D|%d\n"
 -x "%c|%r|%p|%t|<swishdate fmt=/%A, %d. %B %Y/>|%d\n"
 -x "<swishrank>\t<swishdocpath>\t<swishtitle>\t<keywords>\n
 -x "xml_out: \<title\><swishtitle>\>\</title\>\n"
 -x "xml_out: <swishtitle fmt=’<title>%s</title>’>\n"

-H [0|1|2|3|<n>] (header output verbosity)

The -H n switch generates extened header output. This is most useful when searching more than
one index file at a time by specifying more than one index file with the -f switch. -H 2 will gener-
ate a set of headers specific to each index file. This gives access to the settings used to generate each
index file.

Even when searching a single index file, -H n will provided additional information about the index
file, how it was indexed, and how swish is interperting the query.

 -H 0 : print no header information, output only search result entries.
 -H 1 : print standard result header (default).
 -H 2 : print additional header information for each searched index file.
 -H 3 : enhanced header output (e.g. print stopwords).
 -H 9 : print diagnostic information in the header of the results (changed from: C<-v 4>)

129 1 Dec 2005

5.3.1 Searching Command Line ArgumentsSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

-R [0|1] (Ranking Scheme)

This is an experimental feature!

The default ranking scheme in SWISH-E evaluates each word in a query in terms of its frequency
and position in each document. The default scheme is 0.

New in version 2.4.3 you may optionally select an experimental ranking scheme that, in addition to
document frequency and position, uses Inverse Document Frequency (IDF), or the relative frequency
of each word across all the indexes being searched, and Relative Density, or the normalization of the
frequency of a word in relationship to the number of words in the document.

NOTE: IgnoreTotalWordCountWhenRanking must be set to no or 0 in your index(es) for -R 1
to work.

Specify -R 1 to turn on IDF ranking. See the API documentation for how to set the ranking scheme in
your Perl or C program.

5.4 OTHER SWITCHES
-V (version)

Print the current version.

-k *letter* (print out keywords)

The -k switch is used for testing and will cause swish to print out all keywords in the index begin-
ning with that letter. You may enter -k ’*’ to generate a list of all words indexed by swish.

-D *index file* (debug index)

The -D option is no longer supported in version 2.2.

-T *options* (trace/debug swish)

The -T option is used to print out information that may be helpful when debugging swish-e’s opera-
tion. This option replaced the -D option of previous versions.

Running -T help will print out a list of available *options*

5.5 Merging Index Files
In previous versions of Swish-e indexing would require a very large amount of memory and the indexing
process could be very slow. Merging provided a way to index in chunks and then combine the indexes
together into a single index.

 1 Dec 2005130

5.4 OTHER SWITCHES

Indexing is much faster now and uses much less memory, and with the -e switch very little memory is
needed to index a large site.

Still, at times it can be useful to merge different index files into one file for searching. This could be
because you want to keep separate site indexes and a common one for a global search, or you have sepa-
rate collections of documents that you wish to search all at one time, but manage separately.

-M *index1 index2 ... indexN out_index

Merges the indexes specified on the command line -- the last file name entered is the output file. The
output index must not exist (otherwise merge will not proceed).

Only indexes that were indexed with common settings may be merged. (e.g. don’t mix stemming and
non-stemming indexes, or indexes with different WordCharacter settings, etc.).

Use the -e switch while merging to reduce memory usage.

Merge generates progress messages regardless of the setting of -v .

-c *configuration file*

Specify a configuration file while indexing to add administrative information to the output index file.

5.6 Document Info
$Id: SWISH-RUN.pod,v 1.35 2004/08/31 03:15:03 karman Exp $

.

131 1 Dec 2005

5.6 Document InfoSWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

6 SWISH-SEARCH - Swish-e Searching Instructions

 1 Dec 2005132

6 SWISH-SEARCH - Swish-e Searching Instructions

6.1 OVERVIEW
This page describes the process of searching with Swish-e. Please see the SWISH-CONFIG page for
information the Swish-e configuration file directives, and SWISH-RUN for a complete list of command
line arguments.

Searching a Swish-e index involves passing command line arguments to it that specify the index file to
use, and the query (or search words) to locate in the index. Swish-e returns a list of file names (or URLs)
that contain the matched search words. Perl is often used as a front-end to Swish-e such as in CGI applica-
tions, and perl modules exist to for interfacing with Swish-e.

6.2 Searching Syntax and Operations
The -w command line argument is used specify the search query to Swish-e.

 swish-e -w airplane

will find all documents that contain the word airplane.

When running Swish-e from a shell prompt, be careful to protect your query from shell metacharacters
and shell expansions. This often means placing single or double quotes around your query. See Searching
with Perl if you plan to use Perl as a front end to Swish-e. In the examples below single quotes are used to
protect the search from the shell.

The following section describes various aspects of searching with Swish-e.

6.2.1 Boolean Operators

You can use the Boolean operators and, or or not in searching. Without these Boolean operators Swish-e
will assume you’re and’ing the words together. The operators are not case sensitive. These three searches
are the same:

 swish-e -w foo bar
 swish-e -w bar foo
 swish-e -w foo AND bar

[Note: you can change the default to oring by changing the variable DEFAULT_RULE in the config.h file
and recompiling Swish-e.]

The not operator inverts the results of a search.

 swish-e -w not foo

133 1 Dec 2005

6.1 OVERVIEWSWISH-Enhanced: SWISH-SEARCH - Swish-e Searching Instructions

finds all the documents that do not contain the word foo.

Parentheses can be used to group searches.

 swish-e -w ’not (foo and bar)’

The result is all documents that have none or one term, but not both.

To search for the words and, or, or not, place them in a double quotes. Remember to protect the quotes
from the shell:

 swish-e -w ’"not"’
 swish-e -w \"not\"

will search for the word "not".

Other examples:

 swish-e -w smilla or snow

Retrieves files containing either the words "smilla" or "snow".

 swish-e -w smilla snow not sense
 swish-e -w ’(smilla and snow) and not sense’ (same thing)

retrieves first the files that contain both the words "smilla" and "snow"; then among those the ones that do
not contain the word "sense".

6.2.2 Truncation

The wildcard (*) is available, however it can only be used at the end of a word: otherwise is is considered
a normal character (i.e. can be searched for if included in the WordCharacters directive).

 swish-e -w librarian

this query only retrieves files which contain the given word.

On the other hand:

 swish-e -w ’librarian*’

retrieves "librarians", "librarianship", etc. along with "librarian".

 1 Dec 2005134

6.2.2 Truncation

Note that wildcard searches combined with word stemming can lead to unexpected results. If stemming is
enabled, a search term with a wildcard will be stemmed internally before searching. So searching for
running* will actually be a search for run* , so running* would find runway . Also, searching for
runn* will not find running as you might expect, since running stems to run in the index, and thus
runn* will not find run .

6.2.3 Order of Evaluation

In general, the order of evaluation is not important. Internally swish-e processes the search terms from left
to right. Parenthesis can be used to group searches together, effectively changing the order of evaluation.
For example these three are the same:

 swish-e -w foo not bar baz
 swish-e -w not bar foo baz
 swish-e -w baz foo not bar

but these two are not the same:

 swish-e -w foo not bar baz
 swish-e -w foo not (bar baz)

The first finds all documents that contain both foo and baz, but do not contain bar. The second finds all
that contain foo, and contain either bar or baz, but not both.

It is often helpful in understanding searches to use the boolean terms and parenthesis. So the above two
become:

 swish-e -w foo AND (not bar) AND baz
 swish-e -w foo AND (not (bar AND baz))

These four examples are all the same search (assuming that AND is the default search type):

 swish-e -w ’juliet not ophelia and pac’
 swish-e -w ’(juliet) AND (NOT ophelia) AND (pac)’
 swish-e -w ’juliet not ophelia pac’
 swish-e -w ’pac and juliet and not ophelia’

Looking at the the first three searches, first Swish-e finds all the documents with "juliet". Then it finds all
documents that do not contain "ophelia". Those two lists are then combined with the boolean AND opera-
tor resulting with a list of documents that include "juliet" but not "ophelia". Finally, that list is ANDed
with the list of documents that contain "pac" resulting.

However it is always possible to force the order of evaluation by using parenthesis. For example:

135 1 Dec 2005

6.2.3 Order of EvaluationSWISH-Enhanced: SWISH-SEARCH - Swish-e Searching Instructions

 swish-e -w ’juliet not (ophelia and pac)’

retrieves files with "juliet" that do not contain both words "ophelia" and "pac".

6.2.4 Meta Tags

MetaNames are used to represent fields (called columns in a database) and provide a way to search in only
parts of a document. See SWISH-CONFIG for a description of MetaNames, and how they are specified in
the source document.

To limit a search to words found in a meta tag you prefix the keywords with the name of the meta tag,
followed by the equal sign:

 metaname = word
 metaname = (this or that)
 metaname = ((this or that) or "this phrase")

It is not necessary to have spaces at either side of the "=", consequently the following are equivalent:

 swish-e -w "metaName=word"
 swish-e -w "metaName = word"
 swish-e -w "metaName= word"

To search on a word that contains a "=", precede the "=" with a "\" (backslash).

 swish-e -w "test\=3 = x\=4 or y\=5"

this query returns the files where the word "x=4" is associated with the metaName "test=3" or that
contains the word "y=5" not associated with any metaName.

Queries can be also constructed using any of the usual search features, moreover metaName and plain
search can be mixed in a single query.

 swish-e -w "metaName1 = (a1 or a4) not (a3 and a7)"

This query will retrieve all the files in which "a1" or "a2" are found in the META tag "metaName1" and
that do not contain the words "a3" and "a7", where "a3" and "a7" are not associated to any meta name.

6.2.5 Phrase Searching

To search for a phrase in a document use double-quotes to delimit your search terms. (The phrase delim-
iter is set in src/swish.h.)

 1 Dec 2005136

6.2.4 Meta Tags

You must protect the quotes from the shell.

For example, under Unix:

 swish-e -w ’"this is a phrase" or (this and that)’
 swish-e -w ’meta1=("this is a phrase") or (this and that)’

Or under Windows:

 swish-e -w \"this is a phrase\" or (this and that)

You can not use boolean search terms inside a phrase. That is:

 swish-e -w ’this and that’

finds documents with both words "this" and "that", but:

 swish-e -w ’"this and that"’

finds documents that have the phrase "that and that". A phrase can consist of a single word, so this is how
to search for the words used as boolean operators:

 swish-e -w ’this "and" that’

finds documents that contain all three words, but in any order.

You can use the -P switch to set the phrase delimiter character. See SWISH-RUN for examples.

6.2.6 Context

At times you might not want to search for a word in every part of your files since you know that the
word(s) are present in a particular tag. The ability to search according to context greatly increases the
chances that your hits will be relevant, and Swish-e provides a mechanism to do just that.

The -t option in the search command line allows you to search for words that exist only in specific HTML
tags. Each character in the string you specify in the argument to this option represents a different tag in
which the word is searched; that is you can use any combinations of the following characters:

 H means all<HEAD> tags
 B stands for <BODY> tags
 t is all <TITLE> tags
 h is <H1> to <H6> (header) tags
 e is emphasized tags (this may be , <I>, , or)
 c is HTML comment tags (<!-- ... -->)

137 1 Dec 2005

6.2.6 ContextSWISH-Enhanced: SWISH-SEARCH - Swish-e Searching Instructions

 # This search will look for files with these two words in their titles only.
 swish-e -w "apples oranges" -t t

 # This search will look for files with these words in comments only.
 swish-e -w "keywords draft release" -t c

 This search will look for words in titles, headers, and emphasized tags.
 swish-e -w "world wide web" -t the

6.3 Searching with Perl
Perl (http://www.perl.com/) is probably the most common programming language used with Swish-e,
especially in CGI interfaces. Perl makes searching and parsing results with Swish-e easy, but if not done
properly can leave your server vulnerable to attacks.

When designing your CGI scripts you should carefully screen user input, and include features such as
paged results and a timer to limit time required for a search to complete. These are to protect your web site
against a denial of service (DoS) attack.

Included with every distribution of Perl is a document called perlsec -- Perl Security. Please take time to
read and understand that document before writing CGI scripts in perl.

Type at your shell/command prompt:

 perldoc perlsec

If nothing else, start every CGI program in perl as such:

 #!/usr/local/bin/perl -wT
 use strict;

That alone won’t make your script secure, but may help you find insecure code.

6.3.1 CGI Danger!

There are many examples of CGI scripts on the Internet. Many are poorly written and insecure. A
commonly seen way to execute Swish-e from a perl CGI script is with a piped open. For example, it is
common to see this type of open() :

 open(SWISH, "$swish -w $query -f $index|");

This open() gives shell access to the entire Internet! Often an attempt is made to strip $query of bad
characters. But, this often fails since it’s hard to guess what every bad character is. Would you have
thought about a null? A better approach is to only allow in known safe characters.

 1 Dec 2005138

6.3 Searching with Perl

http://www.perl.com/

Even if you can be sure that any user supplied data is safe, this piped open still passes the command
parameters through the shell. If nothing else, it’s just an extra unnecessary step to running Swish-e.

Therefore, the recommended approach is to fork and exec swish-e directly without passing through the
shell. This process is described in the perl man page perlipc under the appropriate heading Safe Pipe
Opens.

Type:

 perldoc perlipc

If all this sounds complicated you may wish to use a Perl module that does all the hard work for you.

6.3.2 Perl Modules

The Swish-e distribution includes a Perl module called SWISH::API. SWISH::API provides access to the
Swish-e C Library.

The SWISH::API module is not installed by default.

The SWISH::API module will embed Swish-e into your perl program so that searching does not require
running an external program. Embedding the Swish-e program into your perl program results in faster
Swish-e searches, especially when running under a persistent environment like mod_perl since it avoids
the cost of opening the index file for every request (mod_perl is much also much faster than CGI because
it avoids the need to compile Perl code for every request).

See the README file in the perl directory of the Swish-e distribution for installation instructions. Docu-
mentation for the SWISH::API module is available at http://swish-e.org and is installed along with other
HTML documentation on your computer.

6.4 Document Info
$Id: SWISH-SEARCH.pod,v 1.6 2003/12/18 05:00:39 whmoseley Exp $

.

139 1 Dec 2005

6.4 Document InfoSWISH-Enhanced: SWISH-SEARCH - Swish-e Searching Instructions

http://swish-e.org/

7 The Swish-e FAQ - Answers to Common Questions

 1 Dec 2005140

7 The Swish-e FAQ - Answers to Common Questions

7.1 Frequently Asked Questions

7.1.1 General Questions

7.1.1.1 What is Swish-e?

Swish-e is Simple Web Indexing System for Humans - Enhanced. With it, you can quickly and easily
index directories of files or remote web sites and search the generated indexes for words and phrases.

7.1.1.2 So, is Swish-e a search engine?

Well, yes. Probably the most common use of Swish-e is to provide a search engine for web sites. The
Swish-e distribution includes CGI scripts that can be used with it to add a search engine for your web site.
The CGI scripts can be found in the example directory of the distribution package. See the README file
for information about the scripts.

But Swish-e can also be used to index all sorts of data, such as email messages, data stored in a relational
database management system, XML documents, or documents such as Word and PDF documents -- or
any combination of those sources at the same time. Searches can be limited to fields or MetaNames within
a document, or limited to areas within an HTML document (e.g. body, title). Programs other than CGI
applications can use Swish-e, as well.

7.1.1.3 Should I upgrade if I’m already running a previous version of Swish-e?

A large number of bug fixes, feature additions, and logic corrections were made in version 2.2. In addi-
tion, indexing speed has been drastically improved (reports of indexing times changing from four hours to
5 minutes), and major parts of the indexing and search parsers have been rewritten. There’s better debug-
ging options, enhanced output formats, more document meta data (e.g. last modified date, document
summary), options for indexing from external data sources, and faster spidering just to name a few
changes. (See the CHANGES file for more information.

Since so much effort has gone into version 2.2, support for previous versions will probably be limited.

7.1.1.4 Are there binary distri butions available for Swish-e on platform foo?

Foo? Well, yes there are some binary distributions available. Please see the Swish-e web site for a list at
http://swish-e.org/.

In general, it is recommended that you build Swish-e from source, if possible.

7.1.1.5 Do I need to reindex my site each time I upgrade to a new Swish-e version?

At times it might not strictly be necessary, but since you don’t really know if anything in the index has
changed, it is a good rule to reindex.

141 1 Dec 2005

7.1 Frequently Asked QuestionsSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

http://swish-e.org/.

7.1.1.6 What’s the advantage of using the libxml2 library for parsing HTML?

Swish-e may be linked with libxml2, a library for working with HTML and XML documents. Swish-e can
use libxml2 for parsing HTML and XML documents.

The libxml2 parser is a better parser than Swish-e’s built-in HTML parser. It offers more features, and it
does a much better job at extracting out the text from a web page. In addition, you can use the Parser -
WarningLevel configuration setting to find structural errors in your documents that could (and would
with Swish-e’s HTML parser) cause documents to be indexed incorrectly.

Libxml2 is not required, but is strongly recommended for parsing HTML documents. It’s also recom-
mended for parsing XML, as it offers many more features than the internal Expat xml.c parser.

The internal HTML parser will have limited support, and does have a number of bugs. For example,
HTML entities may not always be correctly converted and properties do not have entities converted. The
internal parser tends to get confused when invalid HTML is parsed where the libxml2 parser doesn’t get
confused as often. The structure is better detected with the libxml2 parser.

If you are using the Perl module (the C interface to the Swish-e library) you may wish to build two
versions of Swish-e, one with the libxml2 library linked in the binary, and one without, and build the Perl
module against the library without the libxml2 code. This is to save space in the library. Hopefully , the
library will someday soon be split into indexing and searching code (volunteers welcome).

7.1.1.7 Does Swish-e include a CGI inter face?

Yes. Kind of.

There’s two example CGI scripts included, swish.cgi and search.cgi. Both are installed at
$prefix/lib/swish-e.

Both require a bit of work to setup and use. Swish.cgi is probably what most people will want to use as it
contains more features. Search.cgi is for those that want to start with a small script and customize it to fit
their needs.

An example of using swish.cgi is given in the INSTALL man page, and it the swish.cgi documentation.
Like often is the case, it will be easier to use if you first read the documentation.

Please use caution about CGI scripts found on the Internet for use with Swish-e. Some are not secure.

The included example CGI scripts were designed with security in mind. Regardless, you are encouraged
to have your local Perl expert review it (and all other CGI scripts you use) before placing it into produc-
tion. This is just a good policy to follow.

 1 Dec 2005142

7.1.1 General Questions

7.1.1.8 How secure is Swish-e?

We know of no security issues with using Swish-e. Careful attention has been made with regard to
common security problems such as buffer overruns when programming Swish-e.

The most likely security issue with Swish-e is when it is run via a poorly written CGI interface. This is not
limited to CGI scripts written in Perl, as it’s just as easy to write an insecure CGI script in C, Java, PHP,
or Python. A good source of information is included with the Perl distribution. Type perldoc
perlsec at your local prompt for more information. Another must-read document is located at
http://www.w3.org/Secu rity /faq/wwwsf4.html .

Note that there are many free yet insecure and poorly written CGI scripts available -- even some designed
for use with Swish-e. Please carefully review any CGI script you use. Free is not such a good price when
you get your server hacked...

7.1.1.9 Should I run Swish-e as the superuser (root)?

No. Never.

7.1.1.10 What files does Swish-e write?

Swish writes the index file, of course. This is specified with the IndexFile configuration directive or by the
-f command line switch.

The index file is actually a collection of files, but all start with the file name specified with the IndexFile
directive or the -f command line switch.

For example, the file ending in .prop contains the document properties.

When creating the index files Swish-e appends the extension .temp to the index file names. When index-
ing is complete Swish-e renames the .temp files to the index files specified by IndexFile or -f . This is
done so that existing indexes remain untouched until it completes indexing.

Swish-e also writes temporary files in some cases during indexing (e.g. -s http , -s prog with
filters), when merging, and when using -e). Temporary files are created with the mkstemp(3) function
(with 0600 permission on unix-like operating systems).

The temporary files are created in the directory specified by the environment variables TMPDIR and TMP
in that order. If those are not set then swish uses the setting the configuration setting TmpDir. Otherwise,
the temporary file will be located in the current directory.

7.1.1.11 Can I index PDF and MS-Word documents?

Yes, you can use a Filter to convert documents while indexing, or you can use a program that "feeds"
documents to Swish-e that have already been converted. See Index ing below.

143 1 Dec 2005

7.1.1 General QuestionsSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

7.1.1.12 Can I index documents on a web server?

Yes, Swish-e provides two ways to index (spider) documents on a web server. See Spider ing below.

Swish-e can retrieve documents from a file system or from a remote web server. It can also execute a
program that returns documents back to it. This program can retrieve documents from a database, filter
compressed documents files, convert PDF files, extract data from mail archives, or spider remote web
sites.

7.1.1.13 Can I implement keywords in my documents?

Yes, Swish-e can associate words with MetaNames while indexing, and you can limit your searches to
these MetaNames while searching.

In your HTML files you can put keywords in HTML META tags or in XML blocks.

META tags can have two formats in your source documents:

 <META NAME="DC.subject" CONTENT="digital libraries">

And in XML format (can also be used in HTML documents when using libxml2):

 <meta2>
 Some Content
 </meta2>

Then, to inform Swish-e about the existence of the meta name in your documents, edit the line in your
configuration file:

 MetaNames DC.subject meta1 meta2

When searching you can now limit some or all search terms to that MetaName. For example, to look for
documents that contain the word apple and also have either fruit or cooking in the DC.subject meta tag.

7.1.1.14 What are document properties?

A document property is typically data that describes the document. For example, properties might include
a document’s path name, its last modified date, its title, or its size. Swish-e stores a document’s properties
in the index file, and they can be reported back in search results.

Swish-e also uses properties for sorting. You may sort your results by one or more properties, in ascend-
ing or descending order.

Properties can also be defined within your documents. HTML and XML files can specify tags (see previ-
ous question) as properties. The contents of these tags can then be returned with search results. These
user-defined properties can also be used for sorting search results.

 1 Dec 2005144

7.1.1 General Questions

For example, if you had the following in your documents

 <meta name="creator" content="accounting department">

and creator is defined as a property (see PropertyNames in SWISH-CONFIG) Swish-e can return
account ing depart ment with the result for that document.

 swish-e -w foo -p creator

Or for sorting:

 swish-e -w foo -s creator

7.1.1.15 What’s the differ ence between MetaNames and PropertyNames?

MetaNames allows keywords searches in your documents. That is, you can use MetaNames to restrict
searches to just parts of your documents.

PropertyNames, on the other hand, define text that can be returned with results, and can be used for
sorting.

Both use meta tags found in your documents (as shown in the above two questions) to define the text you
wish to use as a property or meta name.

You may define a tag as both a property and a meta name. For example:

 <meta name="creator" content="accounting department">

placed in your documents and then using configuration settings of:

 PropertyNames creator
 MetaNames creator

will allow you to limit your searches to documents created by accounting:

 swish-e -w ’foo and creator=(accounting)’

That will find all documents with the word foo that also have a creator meta tag that contains the word
account ing . This is using MetaNames.

And you can also say:

145 1 Dec 2005

7.1.1 General QuestionsSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

 swish-e -w foo -p creator

which will return all documents with the word foo , but the results will also include the contents of the
creator meta tag along with results. This is using properties.

You can use properties and meta names at the same time, too:

 swish-e -w creator=(accounting or marketing) -p creator -s creator

That searches only in the creator meta name for either of the words account ing or market ing ,
prints out the contents of the contents of the creator property, and sorts the results by the creator
property name.

(See also the -x output format switch in SWISH-RUN.)

7.1.1.16 Can Swish-e index multi-byte characters?

No. This will require much work to change. But, Swish-e works with eight-bit characters, so many charac-
ters sets can be used. Note that it does call the ANSI-C tolower() function which does depend on the
current locale setting. See locale(7) for more information.

7.1.2 Indexing

7.1.2.1 How do I pass Swish-e a list of files to index?

Currently, there is not a configuration directive to include a file that contains a list of files to index. But,
there is a directive to include another configuration file.

 IncludeConfigFile /path/to/other/config

And in /path/to/other/config you can say:

 IndexDir file1 file2 file3 file4 file5 ...
 IndexDir file20 file21 file22

You may also specify more than one configuration file on the command line:

 ./swish-e -c config_one config_two config_three

Another option is to create a directory with symbolic links of the files to index, and index just that direc-
tory.

 1 Dec 2005146

7.1.2 Indexing

7.1.2.2 How does Swish-e know which parser to use?

Swish can parse HTML, XML, and text documents. The parser is set by associating a file extension with a
parser by the IndexContents directive. You may set the default parser with the DefaultContents directive.
If a document is not assigned a parser it will default to the HTML parser (HTML2 if built with libxml2).

You may use Filters or an external program to convert documents to HTML, XML, or text.

7.1.2.3 Can I reindex and search at the same time?

Yes. Starting with version 2.2 Swish-e indexes to temporary files, and then renames the files when index-
ing is complete. On most systems renames are atomic. But, since Swish-e also generates more than one
file during indexing there will be a very short period of time between renaming the various files when the
index is out of sync.

Settings in src/config.h control some options related to temporary files, and their use during indexing.

7.1.2.4 Can I index phrases?

Phrases are indexed automatically. To search for a phrase simply place double quotes around the phrase.

For example:

 swish-e -w ’free and "fast search engine"’

7.1.2.5 How can I prevent phrases from matching across sentences?

Use the BumpPositionCounterCharacters configuration directive.

7.1.2.6 Swish-e isn’t indexing a certain word or phrase.

There are a number of configuration parameters that control what Swish-e considers a "word" and it has a
debugging feature to help pinpoint any indexing problems.

Configuration file directives (SWISH-CONFIG) WordCharacters, BeginCharacters, EndCharacters,
IgnoreFirstChar, and IgnoreLastChar are the main settings that Swish-e uses to define a "word". See
SWISH-CONFIG and SWISH-RUN for details.

Swish-e also uses compile-time defaults for many settings. These are located in src/config.h file.

Use of the command line arguments -k , -v and -T are useful when debugging these problems. Using -T
INDEXED_WORDS while indexing will display each word as it is indexed. You should specify one file
when using this feature since it can generate a lot of output.

 ./swish-e -c my.conf -i problem.file -T INDEXED_WORDS

147 1 Dec 2005

7.1.2 IndexingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

You may also wish to index a single file that contains words that are or are not indexing as you expect and
use -T to output debugging information about the index. A useful command might be:

 ./swish-e -f index.swish-e -T INDEX_FULL

Once you see how Swish-e is parsing and indexing your words, you can adjust the configuration settings
mentioned above to control what words are indexed.

Another useful command might be:

 ./swish-e -c my.conf -i problem.file -T PARSED_WORDS INDEXED_WORDS

This will show white-spaced words parsed from the document (PARSED_WORDS), and how those words
are split up into separate words for indexing (INDEXED_WORDS).

7.1.2.7 How do I keep Swish-e from indexing numbers?

Swish-e indexes words as defined by the WordCharacters setting, as described above. So to avoid index-
ing numbers you simply remove digits from the WordCharacters setting.

There are also some settings in src/config.h that control what "words" are indexed. You can configure
swish to never index words that are all digits, vowels, or consonants, or that contain more than some
consecutive number of digits, vowels, or consonants. In general, you won’t need to change these settings.

Also, there’s an experimental feature called IgnoreNumberChars which allows you to define a set of char-
acters that describe a number. If a word is made up of only those characters it will not be indexed.

7.1.2.8 Swish-e crashes and burns on a certain file. What can I do?

This shouldn’t happen. If it does please post to the Swish-e discussion list the details so it can be repro-
duced by the developers.

In the mean time, you can use a FileRules directive to exclude the particular file name, or pathname, or its
title. If there are serious problems in indexing certain types of files, they may not have valid text in them
(they may be binary files, for instance). You can use NoContents to exclude that type of file.

Swish-e will issue a warning if an embedded null character is found in a document. This warning will be
an indication that you are trying to index binary data. If you need to index binary files try to find a
program that will extract out the text (e.g. strings(1), catdoc(1), pdfto text (1)).

7.1.2.9 How to I prevent indexing of some documents?

When using the file system to index your files you can use the FileRules directive. Other than
FileRules title , FileRules only works with the file system (-S fs) indexing method, not with -S
prog or -S http .

 1 Dec 2005148

7.1.2 Indexing

If you are spidering, use a robots.text file in your document root. This is a standard way to excluded files
from search engines, and is fully supported by Swish-e. See http://www.robotstxt.org/

You can also modify the spider.pl spider perl program to skip, index content only, or spider only listed
web pages. Type perldoc spider.pl in the prog-bin directory for details.

If using the libxml2 library for parsing HTML, you may also use the Meta Robots Exclusion in your docu-
ments:

 <meta name="robots" content="noindex">

See the obeyRobotsNoIndex directive.

7.1.2.10 How do I prevent indexing parts of a document?

To prevent Swish-e from indexing a common header, footer, or navigation bar, AND you are using
libxml2 for parsing HTML, then you may use a fake HTML tag around the text you wish to ignore and
use the IgnoreMetaTags directive. This will generate an error message if the Parser WarningLevel is
set as it’s invalid HTML.

IgnoreMetaTags works with XML documents (and HTML documents when using libxml2 as the parser),
but not with documents parsed by the text (TXT) parser.

If you are using the libxml2 parser (HTML2 and XML2) then you can use the the following comments in
your documents to prevent indexing:

 <!-- SwishCommand noindex -->
 <!-- SwishCommand index -->

and/or these may be used also:

 <!-- noindex -->
 <!-- index -->

7.1.2.11 How do I modify the path or URL of the indexed documents.

Use the ReplaceRules configuration directive to rewrite path names and URLs. If you are using -S prog
input method you may set the path to any string.

7.1.2.12 How can I index data from a database?

Use the "prog" document source method of indexing. Write a program to extract out the data from your
database, and format it as XML, HTML, or text. See the examples in the prog-bin directory, and the
next question.

149 1 Dec 2005

7.1.2 IndexingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

http://www.robotstxt.org/

7.1.2.13 How do I index my PDF, Word, and compressed documents?

Swish-e can internally only parse HTML, XML and TXT (text) files by default, but can make use of
filters that will convert other types of files such as MS Word documents, PDF, or gzipped files into one of
the file types that Swish-e understands.

Please see SWISH-CONFIG and the examples in the filters and filter-bin directory for more information.

See the next question to learn about the filtering options with Swish-e.

7.1.2.14 How do I filter documents?

The term "filter" in Swish-e means the converstion of a document of one type (one that swish-e cannot
index directly) into a type that Swish-e can index, namely HTML, plain text, or XML. To add to the
confusion, there are a number of ways to accomplish this in Swish-e. So here’s a bit of background.

The FileFilter directive was added to swish first. This feature allows you to specify a program to run for
documents that match a given file extension. For example, to filter PDF files (files that end in .pdf) you
can specify the configuation setting of:

 FileFilter .pdf pdftotext "’%p’ -"

which says to run the program "pdftotext" passing it the pathname of the file (%p) and a dash (which tells
pdftotext to output to stdout). Then for each .pdf file Swish-e runs this program and reads in the filtered
document from the output from the filter program.

This has the advantage that it is easy to setup -- a single line in the config file is all that is needed to add
the filter into Swish-e. But it also has a number of problems. For example, if you use a Perl script to do
your filtering it can be very slow since the filter script must be run (and thus compiled) for each processed
document. This is exacerbated when using the -S http method since the -S http method also uses a Perl
script that is run for every URL fetched. Also, when using -S prog method of input (reading input from a
program) using FileFilter means that Swish-e must first read the file in from the external program and then
write the file out to a temporary file before running the filter.

With -S prog it makes much more sense to filter the document in the program that is fetching the docu-
ments than to have swish-e read the file into memory, write it to a temporary file and then run an external
program.

The Swish-e distribution contains a couple of example -S prog programs. spider.pl is a reasonably
full-featured web spider that offers many more options than the -S http method. And it is much faster than
running -S http, too.

The spider has a perl configuration file, which means you can add programming logic right into the
configuration file without editing the spider program. One bit of logic that is provided in the spider’s
configuration file is a "call-back" function that allows you to filter the content. In other words, before the
spider passes a fetched web document to swish for indexing the spider can call a simple subroutine in the
spider’s configuration file passing the document and its content type. The subroutine can then look at the

 1 Dec 2005150

7.1.2 Indexing

content type and decide if the document needs to be filtered.

For example, when processing a document of type "application/msword" the call-back subroutine might
call the doc2txt.pm perl module, and a document of type "appliation/pdf" could use the pdf2html.pm
module. The prog-bin/SwishSpiderConfig.pl file shows this usage.

This system works reasonably well, but also means that more work is required to setup the filters. First,
you must explicitly check for specific content types and then call the appropriate Perl module, and second,
you have to know how each module must be called and how each returns the possibly modified content.

In comes SWISH::Filter.

To make things easier the SWISH::Filter Perl module was created. The idea of this module is that there is
one interface used to filter all types of documents. So instead of checking for specific types of content you
just pass the content type and the document to the SWISH::Filter module and it returns a new content type
and document if it was filtered. The filters that do the actual work are designed with a standard interface
and work like filter "plug-ins". Adding new filters means just downloading the filter to a directory and no
changes are needed to the spider’s configuation file. Download a filter for Postscript and next time you
run indexing your Postscript files will be indexed.

Since the filters are standardized, hopefully when you have the need to filter documents of a specific type
there will already be a filter ready for your use.

Now, note that the perl modules may or may not do the actual conversion of a document. For example, the
PDF conversion module calls the pdfinfo and pdftotext programs. Those programs (part of the Xpfd
package) must be installed separately from the filters.

The SwishSpiderConfig.pl examle spider configuration file shows how to use the SWISH::Filter module
for filtering. This file is installed at $prefix/share/doc/swish-e/examples/prog-bin, where $prefix is
normally /usr/local on unix-type machines.

The SWISH::Filter method of filtering can also be used with the -S http method of indexing. By default
the swishspider program (the Perl helper script that fetches documents from the web) will attempt to use
the SWISH::Filter module if it can be found in Perls library path. This path is set automatically for
spider.pl but not for swishspider (because it would slow down a method that’s already slow and spider.pl
is recommended over the -S http method).

Therefore, all that’s required to use this system with -S http is setting the @INC array to point to the filter
directory.

For example, if the swish-e distribution was unpacked into ~/swish-e:

 PERL5LIB=~/swish-e/filters swish-e -c conf -S http

will allow the -S http method to make use of the SWISH::Filter module.

151 1 Dec 2005

7.1.2 IndexingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

Note that if you are not using the SWISH::Filter module you may wish to edit the swishspider program
and disable the use of the SWISH::Filter module using this setting:

 use constant USE_FILTERS => 0; # disable SWISH::Filter

This prevents the program from attempting to use the SWISH::Filter module for every non-text URL that
is fetched. Of course, if you are concerned with indexing speed you should be using the -S prog method
with spider.pl instead of -S http.

If you are not spidering, but you still want to make use of the SWISH::Filter module for filtering you can
use the DirTree.pl program (in $prefix/lib/swish-e). This is a simple program that traverses the file system
and uses SWISH::Filter for filtering.

Here’s two examples of how to run a filter program, one using Swish-e’s FileFilter directive, another
using a prog input method program. See the SwishSpiderConfig.pl file for an example of using the
SWISH::Filter module.

These filters simply use the program /bin/cat as a filter and only indexes .html files.

First, using the FileFilter method, here’s the entire configuration file (swish.conf):

 IndexDir .
 IndexOnly .html
 FileFilter .html "/bin/cat" "’%p’"

and index with the command

 swish-e -c swish.conf -v 1

Now, the same thing with using the -S prog document source input method and a Perl program called
catfilter.pl. You can see that’s it’s much more work than using the FileFilter method above, but provides a
place to do additional processing. In this example, the prog method is only slightly faster. But if you
needed a perl script to run as a FileFilter then prog will be significantly faster.

 #!/usr/local/bin/perl -w
 use strict;
 use File::Find; # for recursing a directory tree

 $/ = undef;
 find(
 { wanted => \&wanted, no_chdir => 1, },
 ’.’,
);

 1 Dec 2005152

7.1.2 Indexing

 sub wanted {
 return if -d;
 return unless /\.html$/;

 my $mtime = (stat)[9];

 my $child = open(FH, ’-|’);
 die "Failed to fork $!" unless defined $child;
 exec ’/bin/cat’, $_ unless $child;

 my $content = <FH>;
 my $size = length $content;

 print <<EOF;
 Content-Length: $size
 Last-Mtime: $mtime
 Path-Name: $_

 EOF

 print <FH>;
 }

And index with the command:

 swish-e -S prog -i ./catfilter.pl -v 1

This example will probably not work under Windows due to the ’-|’ open. A simple piped open may work
just as well:

That is, replace:

 my $child = open(FH, ’-|’);
 die "Failed to fork $!" unless defined $child;
 exec ’/bin/cat’, $_ unless $child;

with this:

 open(FH, "/bin/cat $_ |") or die $!;

Perl will try to avoid running the command through the shell if meta characters are not passed to the open.
See perldoc -f open for more information.

153 1 Dec 2005

7.1.2 IndexingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

7.1.2.15 Eh, but I just want to know how to index PDF documents!

See the examples in the conf directory and the comments in the SwishSpiderConfig.pl file.

See the previous question for the details on filtering. The method you decide to use will depend on how
fast you want to index, and your comfort level with using Perl modules.

Regardless of the filtering method you use you will need to install the Xpdf packages available from
http://www.foolabs.com/xpdf/.

7.1.2.16 I’m using Windows and can’t get Filters or the prog input method to work!

Both the -S prog input method and filters use the popen() system call to run the external program. If
your external program is, for example, a perl script, you have to tell Swish-e to run perl, instead of the
script. Swish-e will convert forward slashes to backslashes when running under Windows.

For example, you would need to specify the path to perl as (assuming this is where perl is on your
system):

 IndexDir e:/perl/bin/perl.exe

Or run a filter like:

 FileFilter .foo e:/perl/bin/perl.exe ’myscript.pl "%p"’

It’s often easier to just install Linux.

7.1.2.17 How do I index non-English words?

Swish-e indexes 8-bit characters only. This is the ISO 8859-1 Latin-1 character set, and includes many
non-English letters (and symbols). As long as they are listed in WordCharacters they will be indexed.

Actually, you probably can index any 8-bit character set, as long as you don’t mix character sets in the
same index and don’t use libxml2 for parsing (see below).

The TranslateCharacters directive (SWISH-CONFIG) can translate characters while indexing and search-
ing. You may specify the mapping of one character to another character with the TranslateCharacters
directive.

Trans lat eChar ac ters :ascii7: is a predefined set of characters that will translate eight-bit
characters to ascii7 characters. Using the :ascii7: rule will, for example, translate "Ääç" to "aac". This
means: searching "Çelik", "çelik" or "celik" will all match the same word.

Note: When using libxml2 for parsing, parsed documents are converted internally (within libxml2) to
UTF-8. This is converted to ISO 8859-1 Latin-1 when indexing. In cases where a string can not be
converted from UTF-8 to ISO 8859-1 (because it contains non 8859-1 characters), the string will be sent
to Swish-e in UTF-8 encoding. This will results in some words indexed incorrectly. Setting Parser -

 1 Dec 2005154

7.1.2 Indexing

http://www.foolabs.com/xpdf/.

WarningLevel to 1 or more will display warnings when UTF-8 to 8859-1 conversion fails.

7.1.2.18 Can I add/remove files from an index?

Try building swish-e with the --enable-incre mental option.

The rest of this FAQ applies to the default swish-e format.

Swish-e currently has no way to add or remove items from its index. But, Swish-e indexes so quickly that
it’s often possible to reindex the entire document set when a file needs to be added, modified or removed.
If you are spidering a remote site then consider caching documents locally compressed.

Incremental additions can be handled in a couple of ways, depending on your situation. It’s probably
easiest to create one main index every night (or every week), and then create an index of just the new files
between main indexing jobs and use the -f option to pass both indexes to Swish-e while searching.

You can merge the indexes into one index (instead of using -f), but it’s not clear that this has any advan-
tage over searching multiple indexes.

How does one create the incremental index?

One method is by using the -N switch to pass a file path to Swish-e when indexing. It will only index files
that have a last modification date newer than the file supplied with the -N switch.

This option has the disadvantage that Swish-e must process every file in every directory as if they were
going to be indexed (the test for -N is done last right before indexing of the file contents begin and after
all other tests on the file have been completed) -- all that just to find a few new files.

Also, if you use the Swish-e index file as the file passed to -N there may be files that were added after
indexing was started, but before the index file was written. This could result in a file not being added to
the index.

Another option is to maintain a parallel directory tree that contains symlinks pointing to the main files.
When a new file is added (or changed) to the main directory tree you create a symlink to the real file in the
parallel directory tree. Then just index the symlink directory to generate the incremental index.

This option has the disadvantage that you need to have a central program that creates the new files that
can also create the symlinks. But, indexing is quite fast since Swish-e only has to look at the files that
need to be indexed. When you run full indexing you simply unlink (delete) all the symlinks.

Both of these methods have issues where files could end up in both indexes, or files being left out of an
index. Use of file locks while indexing, and hash lookups during searches can help prevent these prob-
lems.

155 1 Dec 2005

7.1.2 IndexingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

7.1.2.19 I run out of memory trying to index my files.

It’s true that indexing can take up a lot of memory! Swish-e is extremely fast at indexing, but that comes
at the cost of memory.

The best answer is install more memory.

Another option is use the -e switch. This will require less memory, but indexing will take longer as not
all data will be stored in memory while indexing. How much less memory and how much more time
depends on the documents you are indexing, and the hardware that you are using.

Here’s an example of indexing all .html files in /usr/doc on Linux. This first example is without -e and
used about 84M of memory:

 270279 unique words indexed.
 23841 files indexed. 177640166 total bytes.
 Elapsed time: 00:04:45 CPU time: 00:03:19

This is with -e , and used about 26M or memory:

 270279 unique words indexed.
 23841 files indexed. 177640166 total bytes.
 Elapsed time: 00:06:43 CPU time: 00:04:12

You can also build a number of smaller indexes and then merge together with -M. Using -e while
merging will save memory.

Finally, if you do build a number of smaller indexes, you can specify more than one index when searching
by using the -f switch. Sorting large results sets by a property will be slower when specifying multiple
index files while searching.

7.1.2.20 "too many open files" when indexing with -e option

Some platforms report "too many open files" when using the -e economy option. The -e feature uses many
temporary files (something like 377) plus the index files and this may exceed your system’s limits.

Depending on your platform you may need to set "ulimit" or "unlimit".

For example, under Linux bash shell:

 $ ulimit -n 1024

Or under an old Sparc

 % unlimit openfiles

 1 Dec 2005156

7.1.2 Indexing

7.1.2.21 My system admin says Swish-e uses too much of the CPU!

That’s a good thing! That expensive CPU is supposed to be busy.

Indexing takes a lot of work -- to make indexing fast much of the work is done in memory which reduces
the amount of time Swish-e is waiting on I/O. But, there’s two things you can try:

The -e option will run Swish-e in economy mode, which uses the disk to store data while indexing. This
makes Swish-e run somewhat slower, but also uses less memory. Since it is writing to disk more often it
will be spending more time waiting on I/O and less time in CPU. Maybe.

The other thing is to simply lower the priority of the job using the nice(1) command:

 /bin/nice -15 swish-e -c search.conf

If concerned about searching time, make sure you are using the -b and -m switches to only return a page at
a time. If you know that your result sets will be large, and that you wish to return results one page at a
time, and that often times many pages of the same query will be requested, you may be smart to request all
the documents on the first request, and then cache the results to a temporary file. The perl module
File::Cache makes this very simple to accomplish.

7.1.3 Spidering

7.1.3.1 How can I index documents on a web server?

If possible, use the file system method -S fs of indexing to index documents in you web area of the file
system. This avoids the overhead of spidering a web server and is much faster. (-S fs is the default
method if -S is not specified).

If this is impossible (the web server is not local, or documents are dynamically generated), Swish-e
provides two methods of spidering. First, it includes the http method of indexing -S http . A number of
special configuration directives are available that control spidering (see Directives for the HTTP Access
Method Only). A perl helper script (swishspider) is included in the src directory to assist with spidering
web servers. There are example configurations for spidering in the conf directory.

As of Swish-e 2.2, there’s a general purpose "prog" document source where a program can feed docu-
ments to it for indexing. A number of example programs can be found in the prog-bin directory,
including a program to spider web servers. The provided spider.pl program is full-featured and is easily
customized.

The advantage of the "prog" document source feature over the "http" method is that the program is only
executed one time, where the swishspider.pl program used in the "http" method is executed once for every
document read from the web server. The forking of Swish-e and compiling of the perl script can be quite
expensive, time-wise.

157 1 Dec 2005

7.1.3 SpideringSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

The other advantage of the spider.pl program is that it’s simple and efficient to add filtering (such as
for PDF or MS Word docs) right into the spider.pl’s configuration, and it includes features such as MD5
checks to prevent duplicate indexing, options to avoid spidering some files, or index but avoid spidering.
And since it’s a perl program there’s no limit on the features you can add.

7.1.3.2 Why does swish report "./swishspider: not found"?

Does the file swishspider exist where the error message displays? If not, either set the configuration option
SpiderDirectory to point to the directory where the swishspider program is found, or place the swishspider
program in the current directory when running swish-e.

If you are running Windows, make sure "perl" is in your path. Try typing perl from a command prompt.

If you not running windows, make sure that the shebang line (the first line of the swishspider program that
starts with #!) points to the correct location of perl. Typically this will be /usr/bin/perl or
/usr/local/bin/perl. Also, make sure that you have execute and read permissions on swishspider.

The swishspider perl script is only used with the -S http method of indexing.

7.1.3.3 I’m using the spider.pl program to spider my web site, but some large files
are not indexed.

The spider.pl program has a default limit of 5MB file size. This can be changed with the max_size
parameter setting. See perldoc spider.pl for more information.

7.1.3.4 I still don’t think all my web pages are being indexed.

The spider.pl program has a number of debugging switches and can be quite verbose in telling you what’s
happening, and why. See perldoc spider.pl for instructions.

7.1.3.5 Swish is not spidering Javascript links!

Swish cannot follow links generated by Javascript, as they are generated by the browser and are not part
of the document.

7.1.3.6 How do I spider other websites and combine it with my own (filesystem)
index?

You can either merge -M two indexes into a single index, or use -f to specify more than one index while
searching.

You will have better results with the -f method.

 1 Dec 2005158

7.1.3 Spidering

7.1.4 Searching

7.1.4.1 How do I limit searches to just parts of the index?

If you can identify "parts" of your index by the path name you have two options.

The first options is by indexing the document path. Add this to your configuration:

 MetaNames swishdocpath

Now you can search for words or phrases in the path name:

 swish-e -w ’foo AND swishdocpath=(sales)’

So that will only find documents with the word "foo" and where the file’s path contains "sales". That
might not works as well as you like, though, as both of these paths will match:

 /web/sales/products/index.html
 /web/accounting/private/sales_we_messed_up.html

This can be solved by searching with a phrase (assuming "/" is not a WordCharacter):

 swish-e -w ’foo AND swishdocpath=("/web/sales/")’
 swish-e -w ’foo AND swishdocpath=("web sales")’ (same thing)

The second option is a bit more powerful. With the ExtractPath directive you can use a regular expression
to extract out a sub-set of the path and save it as a separate meta name:

 MetaNames department
 ExtractPath department regex !^/web/([^/]+).+$!$1/

Which says match a path that starts with "/web/" and extract out everything after that up to, but not includ-
ing the next "/" and save it in variable $1, and then match everything from the "/" onward. Then replace
the entire matches string with $1. And that gets indexed as meta name "department".

Now you can search like:

 swish-e -w ’foo AND department=sales’

and be sure that you will only match the documents in the /www/sales/* path. Note that you can map
completely different areas of your file system to the same metaname:

159 1 Dec 2005

7.1.4 SearchingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

 # flag the marketing specific pages
 ExtractPath department regex !^/web/(marketing|sales)/.+$!marketing/
 ExtractPath department regex !^/internal/marketing/.+$!marketing/

 # flag the technical departments pages
 ExtractPath department regex !^/web/(tech|bugs)/.+$!tech/

Finally, if you have something more complicated, use -S prog and write a perl program or use a filter to
set a meta tag when processing each file.

7.1.4.2 How is ranking calculated?

The swishrank property value is calculated based on which Ranking Scheme (or algorithm) you have
selected. In this discussion, any time the word fancy is used, you should consult the actual code for more
details. It is open source, after all.

Things you can do to affect ranking:

MetaRankBias

You may configure your index to bias certain metaname values more or less than others. See the
MetaRankBias configuration option in the SWISH-CONFIG manpage.

IgnoreTotalWordCountWhenRanking

Set to 1 (default) or 0 in your config file. See the SWISH-CONFIG manpage. NOTE: You must set
this to 0 to use the IDF Ranking Scheme.

structure

Each term’s position in each HTML document is given a structure value based on the context in
which the word appears. The structure value is used to artificially inflate the frequency of each term
in that particular document. These structural values are defined in config.h:

 #define RANK_TITLE 7
 #define RANK_HEADER 5
 #define RANK_META 3
 #define RANK_COMMENTS 1
 #define RANK_EMPHASIZED 0

For example, if the word foo appears in the title of a document, the Scheme will treat that document
as if foo appeared 7 additional times.

All Schemes share the following characteristics:

AND searches

 1 Dec 2005160

7.1.4 Searching

The rank value is averaged for all AND’d terms. Terms within a set of parentheses () are averaged as
a single term (this is an acknowledged weakness and is on the TODO list).

OR searches

The rank value is summed and then doubled for each pair of OR’d terms. This results in higher ranks
for documents that have multiple OR’d terms.

scaled rank

After a document’s raw rank score is calculated, a final rank score is calculated using a fancy log()
function. All the documents are then scaled against a base score of 1000. The top-ranked document
will therefore always have a swishrank value of 1000.

Here is a brief overview of how the different Schemes work. The number in parentheses after the name is
the value to invoke that scheme with swish-e -R or RankScheme() .

Default (0)

The default ranking scheme considers the number of times a term appears in a document (frequency),
the MetaRankBias and the structure value. The rank might be summarized as:

 DocRank = Sum of (structure + metabias)

Consider this output with the DEBUG_RANK variable set at compile time:

 Ranking Scheme: 0
 Word entry 0 at position 6 has struct 7
 Word entry 1 at position 64 has struct 41
 Word entry 2 at position 71 has struct 9
 Word entry 3 at position 132 has struct 9
 Word entry 4 at position 154 has struct 9
 Word entry 5 at position 423 has struct 73
 Word entry 6 at position 541 has struct 73
 Word entry 7 at position 662 has struct 73
 File num: 1104. Raw Rank: 21. Frequency: 8 scaled rank: 30445
 Structure tally:
 struct 0x7 = count of 1 (HEAD TITLE FILE) x rank map of 8 = 8

 struct 0x9 = count of 3 (BODY FILE) x rank map of 1 = 3

 struct 0x29 = count of 1 (HEADING BODY FILE) x rank map of 6 = 6

 struct 0x49 = count of 3 (EM BODY FILE) x rank map of 1 = 3

161 1 Dec 2005

7.1.4 SearchingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

Every word instance starts with a base score of 1. Then for each instance of your word, a running
sum is taken of the structural value of that word position plus any bias you’ve configured. In the
example above, the raw rank is 1 + 8 + 3 + 6 + 3 = 21 .

Consider this line:

 struct 0x7 = count of 1 (HEAD TITLE FILE) x rank map of 8 = 8

That means there was one instance of our word in the title of the file. It’s context was in the <head>
tagset, inside the <title>. The <title> is the most specific structure, so it gets the RANK_TITLE
score: 7. The base rank of 1 plus the structure score of 7 equals 8. If there had been two instances of
this word in the title, then the score would have been 8 + 8 = 16 .

IDF (1)

IDF is short for Inverse Document Frequency. That’s fancy ranking lingo for taking into account the
total frequency of a term across the entire index, in addition to the term’s frequency in a single docu-
ment. IDF ranking also uses the relative density of a word in a document to judge its relevancy.
Words that appear more often in a doc make that doc’s rank higher, and longer docs are not weighted
higher than shorter docs.

The IDF Scheme might be summarized as:

 DocRank = Sum of (density * idf * (structure + metabias))

Consider this output from DEBUG_RANK:

 Ranking Scheme: 1
 File num: 1104 Word Score: 1 Frequency: 8 Total files: 1451
 Total word freq: 108 IDF: 2564
 Total words: 1145877 Indexed words in this doc: 562
 Average words: 789 Density: 1120 Word Weight: 28716
 Word entry 0 at position 6 has struct 7
 Word entry 1 at position 64 has struct 41
 Word entry 2 at position 71 has struct 9
 Word entry 3 at position 132 has struct 9
 Word entry 4 at position 154 has struct 9
 Word entry 5 at position 423 has struct 73
 Word entry 6 at position 541 has struct 73
 Word entry 7 at position 662 has struct 73
 Rank after IDF weighting: 574321
 scaled rank: 132609
 Structure tally:
 struct 0x7 = count of 1 (HEAD TITLE FILE) x rank map of 8 = 8

 struct 0x9 = count of 3 (BODY FILE) x rank map of 1 = 3

 1 Dec 2005162

7.1.4 Searching

 struct 0x29 = count of 1 (HEADING BODY FILE) x rank map of 6 = 6

 struct 0x49 = count of 3 (EM BODY FILE) x rank map of 1 = 3

It is similar to the default Scheme, but notice how the total number of files in the index and the total
word frequency (as opposed to the document frequency) are both part of the equation.

Ranking is a complicated subject. SWISH-E allows for more Ranking Schemes to be developed and
experimented with, using the -R option (from the swish-e command) and the RankScheme (see the API
documentation). Experiment and share your findings via the discussion list.

7.1.4.3 How can I limit searches to the title, body, or comment?

Use the -t switch.

7.1.4.4 I can’t limit searches to title/body/comment.

Or, I can’t search with meta names, all the names are indexed as "plain".

Check in the config.h file if #define INDEXTAGS is set to 1. If it is, change it to 0, recompile, and index
again. When INDEXTAGS is 1, ALL the tags are indexed as plain text, that is you index "title", "h1", and
so on, AND they loose their indexing meaning. If INDEXTAGS is set to 0, you will still index meta tags
and comments, unless you have indicated otherwise in the user config file with the IndexComments direc-
tive.

Also, check for the UndefinedMetaTags setting in your configuration file.

7.1.4.5 I’ve tried running the included CGI script and I get a "Inter nal Server
Error"

Debugging CGI scripts are beyond the scope of this document. Internal Server Error basically means
"check the web server’s log for an error message", as it can mean a bad shebang (#!) line, a missing perl
module, FTP transfer error, or simply an error in the program. The CGI script swish.cgi in the example
directory contains some debugging suggestions. Type perldoc swish.cgi for information.

There are also many, many CGI FAQs available on the Internet. A quick web search should offer help. As
a last resort you might ask your webadmin for help...

7.1.4.6 When I try to view the swish.cgi page I see the contents of the Perl program.

Your web server is not configured to run the program as a CGI script. This problem is described in
perldoc swish.cgi .

163 1 Dec 2005

7.1.4 SearchingSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

7.1.4.7 How do I make Swish-e highlight words in search results?

Short answer:

Use the supplied swish.cgi or search.cgi scripts located in the example directory.

Long answer:

Swish-e can’t because it doesn’t have access to the source documents when returning results, of course.
But a front-end program of your creation can highlight terms. Your program can open up the source docu-
ments and then use regular expressions to replace search terms with highlighted or bolded words.

But, that will fail with all but the most simple source documents. For HTML documents, for example, you
must parse the document into words and tags (and comments). A word you wish to highlight may span
multiple HTML tags, or be a word in a URL and you wish to highlight the entire link text.

Perl modules such as HTML::Parser and XML::Parser make word extraction possible. Next, you need to
consider that Swish-e uses settings such as WordCharacters, BeginCharacters, EndCharacters, Ignore-
FirstChar, and IgnoreLast, char to define a "word". That is, you can’t consider that a string of characters
with white space on each side is a word.

Then things like TranslateCharacters, and HTML Entities may transform a source word into something
else, as far as Swish-e is concerned. Finally, searches can be limited by metanames, so you may need to
limit your highlighting to only parts of the source document. Throw phrase searches and stopwords into
the equation and you can see that it’s not a trivial problem to solve.

All hope is not lost, thought, as Swish-e does provide some help. Using the -H option it will return in the
headers the current index (or indexes) settings for WordCharacters (and others) required to parse your
source documents as it parses them during indexing, and will return a "Parsed Words:" header that will
show how it parsed the query internally. If you use fuzzy indexing (word stemming, soundex, or meta-
phone) then you will also need to stem each word in your document before comparing with the "Parsed
Words:" returned by Swish-e.

The Swish-e stemming code is available either by using the Swish-e Perl module (SWISH::API) or the C
library (included with the swish-e distribution), or by using the SWISH::Stemmer module available on
CPAN. Also on CPAN is the module Text::DoubleMetaphone. Using SWISH::API probably provides the
best stemming support.

7.1.4.8 Do filters effect the performance during search?

No. Filters (FileFilter or via "prog" method) are only used for building the search index database. During
search requests there will be no filter calls.

 1 Dec 2005164

7.1.4 Searching

7.1.5 I have read the FAQ but I still have questions about using
Swish-e.

The Swish-e discussion list is the place to go. http://swish-e.org/. Please do not email developers directly.
The list is the best place to ask questions.

Before you post please read QUESTIONS AND TROUBLESHOOTING located in the INSTALL page.
You should also search the Swish-e discussion list archive which can be found on the swish-e web site.

In short, be sure to include in the following when asking for help.

The swish-e version (./swish-e -V)

What you are indexing (and perhaps a sample), and the number of files

Your Swish-e configuration file

Any error messages that Swish-e is report ing

7.2 Document Info
$Id: SWISH-FAQ.pod,v 1.36 2004/10/04 22:49:35 whmoseley Exp $

.

165 1 Dec 2005

7.2 Document InfoSWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

http://swish-e.org/.

8 SWISH-BUGS - List of bugs known in Swish-e

 1 Dec 2005166

8 SWISH-BUGS - List of bugs known in Swish-e

8.1 DESCRIPTION
This file contains a list of bugs reported or known in Swish-e. If you find a bug listed here you do not
need to report it as a bug. But feel free to bug the developers about it on the Swish-e discussion list.

8.2 Bugs in Swish-e version 2.4
Stopwords not removed from query with Soundex

In dev version 2.5.2 noticed that stopwords are not removed from the query when using Soundex.
The plan is to rewrite the parser soon... (July 2004)

Wild card searching can be very slow

Wild card searching needs to be optimized.

Here’s a three letter search:

 $ swish-e -w ’tra*’ -m1
 # Number of hits: 99952
 # Search time: 5.424 seconds

Two letters:

 $ swish-e -w ’tr*’ -m1
 # Number of hits: 100000
 # Search time: 10.563 seconds

Single letter search:

 $ swish-e -w ’t*’ -m1
 # Number of hits: 100000
 # Search time: 510.939 seconds

and used about 280MB or RAM.

This is a potential for a DoS attack. If you have a large index you may wish to filter out single char-
acter wild cards.

Character Encodings

The XML parser (Expat) returns UTF-8 data to swish-e. Therefore, the XML parser should only be
used for parsing US-ASCII encoded text.

The XML2 & HTML2 parsers (Libxml2) converts characters from UTF-8 to 8859-1 encodings
before indexing and writing properties. Indexing non-8859-1 data may result in invalid character
mappings.

167 1 Dec 2005

8.1 DESCRIPTIONSWISH-Enhanced: SWISH-BUGS - List of bugs known in Swish-e

These issues will be resolved soon.

Phrase search failes with DoubleMetaphone

DoubleMetaphone searching can produce two search words for a single query word. The words are
expanded to (word1 OR word2), but that fails in a phrase query: "some phrase (word1 or word2)
here"

swish-e query parser is due for a rewrite, and this could be resolved then.

 Reported: August 20, 2002 - moseley

Merging

merge.c does not check for matching stopwords or buzzwords in each index.

History:

 Reported: September 3, 2002 - moseley

ResultSortOrder

ResultSort order is not used (and is not documented). The problem is that the data passed to
Compare_Prop er ties () does not have access to the ResultSortOrder table.

History:

 Reported: September 3, 2002 - moseley

8.3 Document Info
$Id: SWISH-BUGS.pod,v 1.9 2004/10/04 22:49:34 whmoseley Exp $

.

 1 Dec 2005168

8.3 Document Info

9 Proposed changes for Swish-e 3.0

169 1 Dec 2005

9 Proposed changes for Swish-e 3.0SWISH-Enhanced: Proposed changes for Swish-e 3.0

9.1 Overview
This pages is intended to give users of Swish-e an idea of the changes to come, to foster discussion of the
direction of Swish-e, and a place where developers can map out new ideas.

None of this is written in stone. Any of the developers can write their ideas in this document, but that
doesn’t mean it will actually happen ;).

9.2 UTF-8 support
Supporting Unicode basically requires a full re-write of all the code.

9.3 drop expat-based parsers, require libxml2
This might simplify the code somewhat as well.

9.4 Support Incremental Indexing
The Swish-e index structure currently makes it diffi cult to do incremental indexing, range limit ing, and
presents limits to indexing due to memory requirements. A database may solve some of these issues, at
possibly a cost of performance.

Swish-e has been linked with Berkeley DB. Although much slower in indexing, this may allow incremen-
tal indexing. Currently, the idea is to offer both database backends.

UPDATE: Mon Nov 8 15:07:59 CST 2004 (karman@cray.com)

This feature is in the 2.5 branch already. What kind of requirements do we have to label it ’stable’?

9.5 Split code into Search and Indexing code
There may be a small benefit from creating a smaller search-only program. CGI scripts may be faster, and
the code would be smaller for those that want to embed Swish-e in to other applications.

Currently, linking libswish-e into a program adds about 720K. Not real significant, but it could be if a
number of processes are running with Swish-e. Another option is to build libswish-e as a shared library.

UPDATE: Mon Nov 8 15:09:12 CST 2004 (karman@cray.com)

This seems done in the 2.4 release. Is that true?

 1 Dec 2005170

9.1 Overview

9.6 Switch to Content-Types
Moseley: Dec 28, 2000

I’m wondering if it might be smart to switch from the current "Document Types" to Content-Types.
Currently, Swish-e know how to parse three types of documents TXT, HTML, and XML. There’s
currently two new configuration directives DefaultContents and IndexContents that map file extensions to
one of the three types. This doesn’t really work when spidering since it’s the content-type that describes
the document and not the file extension.

It’s an issue that can wait, but I’m concerned about backward compatiblity before people start using the
IndexContents and DefaultContents config directives and then we change to content-type in the future.
There’s probably not that many people using those, but it might be work noting in the documentation that
it will change, if we agree.

The main reason to use content-type instead is for http processing where you can’t depend on the file
extension to determine the document type, so with http we have to use content-type to determine how to
deal with the file. This is somewhat moot, as mapping can now be done with -S prog.

I’d propose that Swish-e uses a mime.types file to map from extension to content-type. You could add or
override mappings in the config file:

 AddType text/plain .doc .log

 DefaultType text/html # like DefaultContents currently

The file source "plug-in" (whatever that ends up being) would return a content-type, but if not returned
then Swish-e would map the type from the file name using the mime.types file or any AddType directives.

Again, internally Swish-e only knows about text/[TXT|HTML|XML], so there should be a way to map
other types, otherwise Swish-e might ignore the file. We could continue to use the three type names or
switch completely to content-types.

For example, if we continued to use [TXT|HTML|XML]

 MapType TXT text/directory text/logfile
 MapType HTML text/html

Or maybe just extend the current directives

 IndexContents HTML .htm .html text/html

Where the content-type would have precedence over the file extensions.

171 1 Dec 2005

9.6 Switch to Content-TypesSWISH-Enhanced: Proposed changes for Swish-e 3.0

This would tell Swish-e that those types are handled by those internal handlers.

Then as I’ve mentioned before, you might specify filters as such

 FilterDocument application/msword /path/to/word-to-text

And word-to-text would convert to text and return one of the three content-types that Swish-e knows how
to parse, or a different content type if were to chain filters.

9.7 Enhanced the PropertyNames directive
Moseley: Updated Jan 13, 2001

If the PropertyNames directive was enhanced to be able to limit the number of characters stored, option-
ally extract text from HTML, and was able to define what type of docs (text, XML, HTML) it applied to,
then the existing PropertyNames feature would work like the new StoreDescription feature but be useful
for more than just one use.

I’m not clear how to enhance the syntax of Properties and/or Metanames, but here’s some ideas. Rainer
suggested that an xml-type of format might be best and commonly understood. That’s a good idea. Below
are some older ideas that I had. But you will get the idea...

The metaname structure could have flags for properties:

 1 - limiting to a length
 2 - stripping HTML
 3 - encoding HTML entities on output

Oct 9, 2001 - The code is now in Swish-e to limit a string property to a length. The stripping of HTML is
an issue for discussion. And encoding entities on output should be a result_outpu.c issue.

UPDATE: Mon Nov 8 15:13:26 CST 2004 (karman@cray.com)

Is this fully supported in 2.4?

9.8 Apache/XML style configuration
This would be to allow some directives to be set per directory, or perl file extenstion (or content-type).

9.9 Document Info
$Id: SWISH-3.0.pod,v 1.7 2004/11/08 21:19:35 karman Exp $

 1 Dec 2005172

9.7 Enhanced the PropertyNames directive

.

173 1 Dec 2005

9.9 Document InfoSWISH-Enhanced: Proposed changes for Swish-e 3.0

10 SWISH-LIBRARY - Inter face to the Swish-e C
library

 1 Dec 2005174

10 SWISH-LIBRARY - Interface to the Swish-e C library

10.1 What is the Swish-e C library?
The C library in an interface to the Swish-e search code. It provides a way to embed Swish-e into your
applications. This API is based on Swish-e version 2.3.

Note: This is a NEW API as of Swish-e version 2.3. The C language interface has changed as has the perl
interface to Swish-e. The new Perl interface is the SWISH::API module and is included with the Swish-e
distribution. The old SWISHE perl module has been rewritten to work with the new API. The SWISHE
perl module is no longer included with the Swish-e distribution, but can be downloaded from the Swish-e
web site.

The advantage of the library is that the index files or files can be opened one time and many queries made
on the open index. This saves the startup time required to fork and run the swish-e binary, and the expen-
sive time of opening up the index file. Some benchmarks have shown a three fold increase in speed.

The downside is that your program now has more code and data in it (the index tables can use quite a bit
of memory), and if a fatal error happens in swish it will bring down your program. These are things to
think about, especially if embedding swish into a web server such as Apache where there are many
processes serving requests.

The best way to learn about the library is to look at two files included with the Swish-e distribution that
make use of the library.

src/libtest.c

This file gives a basic overview of linking a C program with the Swish-e library. Not all available
functions are used in that example, but it should give you a good overview of building a C program
with swish-e.

To build and run libtest chdir to the src directory and run the commands:

 $ make libtest
 $./libtest [optional name of index file]

You will be prompted for the search words. The default index used is index.swish-e. This can be
overridden by placing a list of index files in a quote-protected string.

 $./libtest ’index1 index2 index3’

perl/API.xs

The API.xs file is a Perl "xsub" interface to the C library and is part of the SWISH::API Perl module.
This is an object-oriented interface to the Swish-e library and demonstrates how the various search
"objects" are created by C calls and how they are destroyed when no longer needed.

175 1 Dec 2005

10.1 What is the Swish-e C library?SWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

10.2 Installing the Swish-e library
The Swish-e library is installed when you run "make install" when building Swish-e. No extra installation
steps are required.

The library consists of a header file "swish-e.h" and a library "libswish-e.*" that can either be a static or
shared library depending on your platform.

10.3 Library Overview
When you first attach to an index file (or index files) you are returned a "swish handle". From the handle
you create one or more "search objects" which holds the parameters to query the index, such as the query
string, sort order, search phrase delimiter, limit parameters and HTML structure bits. The "object" is really
just a pointer to a C structure, but it’s helpful to think of it as an object that data and functionality associ-
ated with it.

The search object is used to query the index. A query returns a "results object". The results object holds
the number of hits, the parsed query per index, and the result set. The results object keeps track of the
current position in the result set. You may "seek" to a specific record within the result set (useful for
displaying a page of results).

Finally, a result object represents a single result from the result list. A result object provides access to the
result’s properties (such as file name, rank, etc.).

In addition to results, there are functions available to access the header values stored in the index file,
functions to check and report errors, and a few utility functions.

10.4 Available Functions
Below is the list of available function included in the Swish-e C language API.

These functions (and typedefs) are defined in the swish-e.h header file. The common objects (e.g. struc-
tures) used are:

 SW_HANDLE - swish handle that associates with an index file
 SW_SEARCH - search "object" that holds search parameters
 SW_RESULTS - results "object" that holds a result set
 SW_RESULT - a single result used for accessing the result’s properties
 SW_FUZZYWORD - used for fuzzy (stemming) word conversion

10.4.1 Searching

SW_HANDLE SwishInit(char *IndexFiles);

 1 Dec 2005176

10.2 Installing the Swish-e library

This functions opens and reads the header info of the index files included in IndexFiles string. The
string should contain a space-separated list of index files.

 SW_HANDLE myhandle;
 myhandle = SwishInit("file1.idx");

Typically you will open a handle at the beginning of your program and use it to make multiple
queries on an index.

This function will always return a swish handle. You must check for errors, and on error free the
memory used by the handle, or abort.

Here’s an example of aborting:

 SW_HANDLE swish_handle;
 swish_handle = SwishInit("file1.idx file2.idx");
 if (SwishError(swish_handle))
 SwishAbortLastError(swish_handle);

And here’s an example of catching the error:

 SW_HANDLE swish_handle;
 swish_handle = SwishInit("file1.idx file2.idx");
 if (SwishError(swish_handle))
 {
 printf("Failed to connect to swish. %s\n", SwishErrorString(swish_handle));
 SwishClose(swish_handle); /* free the memory used */
 return 0;
 }

You may have more than one handle active at a time.

Swish-e will not tell you if the index file changes on disk (such as after reindexing). In a persistent
environment (e.g. mod_perl) the calling program should check to see if the index file has changed on
disk. A common way to do this is to store the inode number before opening the index file(s),
and then stat the file name every so often and reopen the index files if the inode number changes.

void SwishClose(SW_HANDLE handle);

This function closes and frees the memory of a Swish handle. Every swish handle should be freed
when done searching the index. Failing to close the handle will result in a memory leak.

SW_SEARCH New_Search_Object(SW_HANDLE handle, const char *query);

Returns a new search "object". The search object holds the parameters used for searching an index. A
single search object can be used to query the index multiple times. The available settings listed below
are "sticky" in that they remain set on the search object until change.

177 1 Dec 2005

10.4.1 SearchingSWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

void SwishSetStructure(SW_SEARCH srch, int structure);

Sets the "structure" flag in the search object. The structure flag is used to limit searches to parts of
HTML files (such as to the title or headers). The default is to not limit. This provides the functional-
ity of the -H command line switch.

void SwishPhraseDelimiter (SW_SEARCH srch, char delimiter);

Sets the phrase delimiter character. The default is double-quotes.

void SwishSetSort(SW_SEARCH srch, char *sort);

Sets the sort order of the results. This is the same as the -s switch used with the swish-e binary.

void SwishSetQuery(SW_SEARCH srch, char *query);

Sets the query string in the search object. This typically is not needed since it can be set when creat-
ing the search object or when executing a query.

void SwishSetSearchLimit (SW_SEARCH srch, char *prop ertyname, char *low, char *hi);

Sets the limit parameters for a search. Provides the same functionality as the -L command line
switch. You may specify a range of property values that search results must be within. You may call
Swish Set Search Limit () only one time for each property (but can set limits on more than one
property at a time).

Unlike the other settings on the search object, once you run a query on the search object you must
call SwishRe set Search Limit () to change or clear the limit parameters.

void SwishResetSearchLimit (SW_SEARCH srch);

Resets the limits set on a search object set by Swish Set Search Limit ().

void Free_Search_Object(SW_SEARCH srch);

Frees the search object. This must be called when done with the search object. Generally, you can
reuse a search object for multiple queries so typically you would call this right before calling
Swish Close ().

You may free the search object before freeing and generated results objects.

SW_RESULTS SwishExecute(SW_SEARCH search, const char *query);

Searches the index or indexes based on the parameters in the search object. Returns a results object.
See below for functions to access the data stored in the results object.

You should always check for errors after calling SwishEx ecute ().

 1 Dec 2005178

10.4.1 Searching

SW_RESULTS SwishQuery(SW_HANDLE, const char *words);

This is a short-cut function that bypasses the creation of a search object (actually, bypasses the need
to create and free a search object). This only allows passing in a query string; other search parameters
cannot be set. The results are sorted by rank.

You should always check for errors after calling Swish Query ().

10.4.2 Reading Results

int SwishHits(SW_RESULTS results);

Returns the number of results in the results object.

SWISH_HEADER_VALUE SwishParsedWords(SW_RESULTS, const char *index_name);

Returns the tokenized query. Words are split by WordCharacters and stopwords are removed. The
parsed words are useful for highlighting search terms in your program.

The "index_name" is the name of the index supplied in the SwishInit() function call.

Returns a SWISH_HEADER_VALUE union of type SWISH_LIST which is a char **. See
src/libtest.c for an example of accessing the strings in this list, but in general you may cast this to a
(char **).

SWISH_HEADER_VALUE SwishRemovedStopwords(SW_RESULTS, const char *index_name);

Returns a list of stopwords removed from the input query.

Returns a SWISH_HEADER_VALUE union of type SWISH_LIST which is a char **. See
src/libtest.c for an example of accessing the strings in this list, but in general you may cast this to a
(char **).

int SwishSeekResult(SW_RESULTS, int position);

Sets the current seek position in the list of results, with position zero being the first record (unlike -b
where one is the first result).

Returns the position or a negative number on error.

SW_RESULT SwishNextResult(SW_RESULTS);

Returns the next result, or NULL if not more results are available.

The result object returned does not need to be freed after use (unlike the swish handle, search object,
and results object).

179 1 Dec 2005

10.4.2 Reading ResultsSWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

const char *SwishResultPropertyStr (SW_RESULT, char *prop ertyname);

This function is mostly useful for testing as it returns odd results on errors.

Aborts if called with a NULL SW_RESULT object

Returns a string value of the specified property.

Returns the empty string "" if the current result does not have the specified property assigned.

Returns the string "(null)" on invalid property name (i.e. property name is not defined in the index)
and sets an error (see below) indicating the invalid property name.

The string returned does not need to be freed, but is only valid for the current result. If you wish to
save the string you must copy it locally.

Dates are formatted using the hard-coded format string: "%Y-%m-%d %H:%M:%S" in localtime.

unsigned long SwishResultPropertyULong(SW_RESULT r, char *prop ertyname);

Returns a numeric property as an unsigned long. Numeric properties are used for both Property-
NamesNumeric and PropertyNamesDate type of properties. Dates are returned as a unix timestamp
as reported by the system when the index was created.

Swish-e will abort if called with a NULL SW_RESULT object. Without the SW_RESULT object
swish-e cannot set any error codes.

On error returns UMAX_LONG. This is commonly defined in limits.h. Check Swish Er ror () (see
below) for the type of error.

If Swish Er ror () returns false (zero) then it simply means that this result does not have any data
for the specified property.

If Swish Er ror () returns true (non-zero) then either the propertyname specified is invalid, or the
property requested is not a numeric (or date) property (e.g. it’s a string property).

See below on how to fetch the specific error message when Swish Er ror () is true.

PropValue *getResultPropValue (SW_RESULT r, char *prop ertyname, int ID);

This is a low-level function to fetch a property regardless of type. This is likely the best function for
accessing properties.

Swish-e will abort if called with a NULL SW_RESULT object. Propertyname is the name of the
property. ID is the id number of the property, if known. ID is not normally used in the API, but it’s
purpose is to avoid looking up the property ID for every result displayed.

 1 Dec 2005180

10.4.2 Reading Results

The return PropValue is a structure that contains a flag to indicate the type, and a union that holds the
property value. They flags and structure are defined in swish-e.h.

The property must be copied locally and the returned "PropValue" value must be freed by calling
freeRe sult Prop Value () to avoid a memory leak.

On error returns NULL. Check Swish Er ror () (see below) for the type of error.

If returns NULL but Swish Er ror () returns false (zero) then it simply means that this result does
not have any data for the specified property.

If Swish Er ror () returns true (non-zero) then the property name specified is invalid (i.e. not
defined for the index).

See below on how to fetch the specific error message when Swish Er ror () is true.

See perl/API.xs for an example on using this function.

void freeResultPropValue(void)

Frees the "PropValue" returned after calling getRe sult Prop Value ().

void Free_Results_Object(SW_RESULTS results);

Frees the results object (frees the result set). This must be called when done reading the results and
before calling Swish Close ().

10.4.3 Accessing the Index Header Values

Each index file has associated header values that describe the index. These functions provide access to this
data. The header data is returned as a union SWISH_HEADER_VALUE, and a pointer to a
SWISH_HEADER_TYPE is passed in and the returned value indicates the type of data that is returned.
See src/libtest.c and perl/API.xs for examples.

const char **SwishHeaderNames(SW_HANDLE);

Returns the list of possible header names. This list is the same for all index files of a given version of
Swish-e. It provides a way to gain access to all headers without having to list them in your program.

const char **SwishIn dexNames(SW_HANDLE);

Returns a list of index files opened. This is just the list of index files specified in the SwishInit()
call. You need the name of the index file to access a specific index’s header values.

SWISH_HEADER_VALUE SwishHeaderValue(SW_HANDLE, const char *index_name, const
char *cur_header, SWISH_HEADER_TYPE *type);

181 1 Dec 2005

10.4.3 Accessing the Index Header ValuesSWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

Fetches the header value for the given index file, and the header name. The call sets the "type" passed
in to the type of value returned.

See src/libtest.c and perl/API.xs for examples.

SWISH_HEADER_VALUE SwishResultIndexValue(SW_RESULT, const char *name,
SWISH_HEADER_TYPE *type);

This is like Swish Header Value () above, but instead of supplying an index file name and a
swish handle, supply a result object and the header value is fetched from the result’s related index
file.

10.4.4 Accessing Property Meta Data

In addition to the pre-defined standard properties, you have the option of adding additional "meta" proper-
ties to be indexed and/or added to the list of properties returned with each result. Consult the sections on
the MetaNames and PropteryNames directives in the CONFIGURATION FILE for an explanation of how
to do this.

These functions provide access to the meta data stored in an index. You can use them to determine what
meta/property information is available for an index including all the pre-defined standard properties. See
libtest.c for an example.

SWISH_META_LIST SwishMetaList(SW_HANDLE, const char *index_name);

Returns the list of meta entries for the given index file as a null-terminated array of SW_META
objects. Use the functions below to extract specific fields from the SW_META structure. Meta’s are
distinct from properties.

SWISH_META_LIST SwishPropertyList (SW_HANDLE, const char *index_name);

This function is the same as Swish MetaL ist () but it returns an array of properties as opposed to
meta objects. Property attributes can be extracted in the same was as meta objects using the functions
below.

SWISH_META_LIST SwishResultMetaList(SW_RESULT);

This is like Swish MetaL ist () above but determines the index to use from a result object.

SWISH_META_LIST SwishResultPropertyList (SW_RESULT);

This is like Swish Prop ertyList () above but like SwishRe sult MetaList () uses a result
object instead of an index name.

const char *SwishMetaName(SW_META);

 1 Dec 2005182

10.4.4 Accessing Property Meta Data

Given a SW_META object returned by one of the above, this function will return the meta/property’s
name. You can use this name to access a property’s value for a given as described above.

int SwishMetaType(SW_META);

Get the data type for the given meta/property. Known types are listed in swish-e.h

SwishMetaID(SW_META);

Get the internal ID number for the given meta/property. These id’s are unique per index file but are
not unique per results.

10.4.5 Checking for Errors

You should check for errors after all calls. The last error is stored in the swish handle object, and is only
valid until the next operation (which resets the error flags).

Currently, some errors are flagged as "critical" errors. In these cases you should destroy (by calling the
Swish Close () function) the current swish handle. If you have other objects in scope (e.g. a search
object or results object) destroy those first.

The types of errors that are critical can be seen in src/error.c. Currently the list includes:

 Could not open index file
 Unknown index file format
 Index file(s) is empty
 Index file error
 Invalid swish handle
 Invalid results object

int SwishError (SW_HANDLE);

This returns true if an error condition exists. It returns the error number, which is a integer less than
zero on error. This should be checked before calling any of the other error functions below.

const char *SwishErrorString (SW_HANDLE);

This returns a general text description of the current error.

const char *SwishLastErrorMsg(SW_HANDLE);

In some cases this will return a string with specifics about the current error. For example, Swish -
Er rorString () may return "Unknown metaname", but Swish LastEr rorMsg () will return a
string with the name of the unknown metaname.

int SwishCrit icalError (SW_HANDLE);

183 1 Dec 2005

10.4.5 Checking for ErrorsSWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

Returns true if the current error condition is a critical error. On critical errors you should free up any
current objects and call Swish Close () as swish may be in an unstable state.

void SwishAbortLastError (SW_HANDLE);

This is a convenience function that will format and print the last error message, and then abort the
program.

void set_error_handle(FILE *where);

Sets where errors and warnings are printed (when printed by swish). For historical reasons, when
swish-e first starts up errors and warnings are sent to stdout.

void SwishErrorsToStderr (void);

A convenience method to send errors to stderr instead of stdout.

10.4.6 Utility Functions

const char *SwishWordsByLetter(SWISH * sw, char *indexname, char c);

Returns all the words in the index "indexname" that begin with the letter passed in. Returns NULL if
the name of the index file is invalid.

This fuction may change in the future since only 8-bit chars can currently be used.

char * SwsishStemWord(SW_HANDLE sw, char *in_word);

Deprecated

This can be used to convert a word to its stem. It uses only the original Porter Stemmer.

SW_FUZZYWORD SwishFuzzyWord(SW_RESULT r, char *word);

Stems "word" based on the fuzzy mode selected during indexing.

The fuzzy mode used during indexing is stored in the index file. Since each result is linked to a given
index file this method allows stemming a word based on it’s index file.

One possible use for this is to highlight search terms in a document summary, which would be based
on a given result.

The methods below can be used to access the data returned. The SW_FUZZYWORD object must be
freed when done to avoid a memory leak.

const char **SwishFuzzyWordList (SW_FUZZYWORD fw);

 1 Dec 2005184

10.4.6 Utility Functions

Returns a null terminated list of strings returned by the stemmer. In most cases this will be a single
string.

Here’s an example:

 SW_FYZZYWORD fuzzy_word = SwishFuzzyWord(result);
 const char **word_list = SwishFuzzyWordList(fuzzy_word);
 while (*word_list)
 {
 printf("%s\n", *word_list);
 word_list++;
 }
 SwishFuzzyWordFree(fuzzy_word);

If the stemmer does not convert the string (for example attempting to stem numeric data) the
word_list will contain the original word. To tell if the stemmer actually stemmed the word check the
return value with Swish Fuzzy WordEr ror ().

int SwishFuzzyWordEr ror (SW_FUZZYWORD fw);

This returns zero if the stemming operation was sucessfull , otherwise it returns a value indicating the
reason the word was not stemmed. The return values are defined in the swish-e src/stemmer.h file.

Not all stemmers set this value correctly. But since Swish Fuzzy WordList () will return a valid
string regardless of the return value, you can often just ignore this setting. That’s what I do.

int SwishFuzzyWordCount(SW_FUZZYWORD fw);

Returns the count of string in the word list available by calling Swish Fuzzy WordList ().

This is normally just one, but in the case of DoubleMetaphone it can be one or two (i.e. DoubleMeta-
phone can return one or two strings).

const char *SwishFuzzyMode(SW_RESULT r);

Returns the name of the stemmer used for the given result (which is related to an index).

void SwishFuzzyWordFree(SW_FUZZYWORD fw);

Frees the memory used by the SW_FUZZYWORD.

10.5 Bug-Reports
Please report bug reports to the Swish-e discussion group. Feel also free to improve or enhance this
feature.

185 1 Dec 2005

10.5 Bug-ReportsSWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

10.6 Author
Original interface: Aug 2000 Jose Ruiz jmruiz@boe.es

Updated: Aug 22, 2002 - Bill Moseley

Interface redesigned for Swish-e version 2.3 Oct 17, 2002 - Bill Moseley

10.7 Document Info
$Id: SWISH-LIBRARY.pod,v 1.12 2004/05/01 01:24:17 whmoseley Exp $

.

 1 Dec 2005186

10.6 Author

11 SWISH::API - Perl inter face to the Swish-e C
Library

187 1 Dec 2005

11 SWISH::API - Perl interface to the Swish-e C LibrarySWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

11.1 SYNOPSIS

 use SWISH::API;

 my $swish = SWISH::API->new(’index.swish-e’);

 $swish->AbortLastError
 if $swish->Error;

 # A short-cut way to search

 my $results = $swish->Query("foo OR bar");

 # Or more typically
 my $search = $swish->New_Search_Object;

 # then in a loop
 my $results = $search->Execute($query);

 # always check for errors (but aborting is not always necessary)

 $swish->AbortLastError
 if $swish->Error;

 # Display a list of results

 my $hits = $results->Hits;
 if (!$hits) {
 print "No Results\n";
 return; /* for example *.
 }

 print "Found ", $results->Hits, " hits\n";

 # Seek to a given page - should check for errors
 $results->SeekResult(($page-1) * $page_size);

 1 Dec 2005188

11.1 SYNOPSIS

 while (my $result = $results->NextResult) {
 printf("Path: %s\n Rank: %lu\n Size: %lu\n Title: %s\n Index: %s\n Modified: %s\n Record #: %lu\n File #: %lu\n\n",
 $result->Property("swishdocpath"),
 $result->Property("swishrank"),
 $result->Property("swishdocsize"),
 $result->Property("swishtitle"),
 $result->Property("swishdbfile"),
 $result->ResultPropertyStr("swishlastmodified"),
 $result->Property("swishreccount"),
 $result->Property("swishfilenum")
);
 }

 # display properties and metanames

 for my $index_name ($swish->IndexNames) {
 my @metas = $swish->MetaList($index_name);
 my @props = $swish->PropertyList($index_name);

 for my $m (@metas) {
 my $name = $m->Name;
 my $id = $m->ID;
 my $type = $m->Type;
 }
 # (repeat above for @props)
 }

11.2 DESCRIPTION
This module provides a Perl interface to the Swish-e search engine. This module allows embedding the
swish-e search code into your application avoiding the need to fork to run the swish-e binary and to keep
an index file open when running multiple queries. This results in increased search performance.

11.3 DEPENDENCIES
You must have installed Swish-e version 2.4 before building this module. Download from:

 http://swish-e.org

11.4 OVERVIEW
This module includes a number of classes.

Searching consists of connecting to a swish-e index (or indexes), and then running queries against the
open index. Connecting to the index creates a swish object blessed into the SWISH::API class.

A SWISH::API::Search object is created from the SWISH::API object. The SWISH::API::Search object
can have associated parameters (e.g. result sort order).

189 1 Dec 2005

11.2 DESCRIPTIONSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

http://swish-e.org/

The SWISH::API::Search object is used to query the associated index file or files. A query on a search
object returns a results object of the class SWISH::API::Results. Then individual results of the
SWISH::API::Result class can be fetched by calling a method of the results object.

Finally, a result’s properties can be accessed by calling methods on the result object.

11.5 METHODS

11.5.1 SWISH::API - Swish Handle Object

To begin using Swish you must first create a Swish Handle object. This object makes the connection to
one or more index files and is used to create objects used for searching the associated index files.

$swish = SWISH::API->new($index_files);

This method returns a swish handle object blessed into the SWISH::API class. $index_files is a
space separated list of index files to open. This always returns an object, even on errors. Caller must
check for errors (see below).

@indexes = $swish->IndexNames;

Returns a list of index names associated with the swish handle. These were the indexes specified as a
parameter on the SWISH::API->new call. This can be used in calls below that require specifying the
index file name.

@header_names = $swish->HeaderNames;

Returns a list of possible header names. These can be used to lookup header values. See Swish -
Header Value method below.

@values = $swish->HeaderValue($index_file, $header_name);

A swish-e index has data associated with it stored in the index header. This method provides access
to that data.

Returns the header value for the header and index file specified. Most headers are a single item, but
some headers (e.g. "Stopwords") return a list.

The list of possible header names can be obtained from the SwishHeaderNames method.

$swish->RankScheme(0|1);

Similar to the -R option with the swish-e command line tool. The default ranking scheme is 0. Set it
to 1 to experiment with other ranking features. See the SWISH-CONFIG documentation for more on
ranking schemes.

 1 Dec 2005190

11.5 METHODS

11.5.1.1 Error Handling

All errors are stored in and accessed via the SWISH::API object (the Swish Handle). That is, even an error
that occurs when calling a method on a result (SWISH::API::Result) object will store the error in the
parent SWISH:API object.

Check for errors after every method call. Some errors are critical errors and will require destruction of the
SWISH::API object. Critical errors will typically only happen when attaching to the database and are
errors such as an invalid index file name, permissions errors, or passing invalid objects to calls.

Typically, if you receive an error when attaching to an index file or files you should assume that the error
is critical and let the swish object fall out of scope (and destroyed). Otherwise, if an error is detected you
should check if it is a critical error. If the error is not critical you may continue using the objects that have
been created (for example, an invalid meta name will generate a non-critical error, so you may continue
searching using the same search object).

Error state is cleared upon a new query.

Again, all error methods need to be called on the parent swish object

$swish->Error

Returns true if an error occurred on the last operation. On errors the value returned is the internal
Swish-e error number (which is less than zero).

$swish->CriticalError

Returns true if the last error was a critical error

$swish->AbortLastError

Aborts the running program and prints an error message to STDERR.

$str = $swish->ErrorString

Returns the string description of the current error (based on the value returned by $swish->Error).
This is a generic error string.

$msg = $swish->LastErrorMsg

Returns a string with specific information about the last error, if any. For example, if a query of:

 badmeta=foo

and "badmeta" is an invalid metaname $swish->ErrorString might return "Unknown metaname", but
$swish->LastErrorMsg might return "badmeta".

191 1 Dec 2005

11.5.1 SWISH::API - Swish Handle ObjectSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

11.5.1.2 Generating Search and Result Objects

$search = $swish->New_Search_Object($query);

This creates a new search object blessed into the SWISH::API::Search class. The optional $query
parameter is a query string to store in the search object.

See the section on SWISH::API::Search for methods available on the returned object.

The advantage of this method is that a search object can be used for multiple queries:

 $search = $swish->New_Search_Objet;
 while ($query = next_query()) {
 $results = $search->Execute($query);
 ...
 }

$results = $swish->Query($query);

This is a short-cut which avoids the step of creating a separate search object. It returns a results
object blessed into the SWISH::API::Results class described below.

This method basically is the equivalent of

 $results = $swish->New_Search_Object->Execute($query);

11.5.2 SWISH::API::Search - Search Objects

A search object holds the parameters used to generate a list of results. These methods are used to adjust
these parameters and to create the list of results for the current set of search parameters.

$search->SetQuery($query);

This will set (or replace) the query string associated with a search object. This method is typically not
used as the query can be set when executing the actual query or when creating a search object.

$search->SetStructure($structure_bits);

This method may change in the future.

A "structure" is a bit-mapped flag used to limit search results to specific parts of an HTML docu-
ment, such as the title or in H tags. The possible bits are:

 1 Dec 2005192

11.5.2 SWISH::API::Search - Search Objects

 IN_FILE = 1 This is the default
 IN_TITLE = 2 In <title> tag
 IN_HEAD = 4 In <head> tag
 IN_BODY = 8 In <body>
 IN_COMMENTS = 16 In html comments
 IN_HEADER = 32 In <h*>
 IN_EMPHASIZED = 64 In , , , <i>
 IN_META = 128 In a meta tag (e.g. not swishdefault)

So if you wish to limit your searches to words in heading tags (e.g. <H1>) or in the <title> tag use:

 $search->SetStructure(IN_HEAD | IN_TITLE);

$search->PhraseDelimiter ($char);

Sets the character used as the phrase delimiter in searches. The default is double-quotes (").

$search->SetSearchLimit ($property, $low, $high);

Sets a range from $low to $high inclusive that the give $prop erty must be in to be selected as a
result. Call multiple times to set more than one limit on different properties. Limits are ANDed, that
is, a result must be within the range of all limits specified to be included in a list of results.

For example to limit searches to documents modified in the last 48 hours:

 my $start = time - 48 * 60 * 60;
 $search->SetSearchLimit(’swishlastmodified’, $start, time());

An error will be set if the property has already been specified or if $high < $low.

Other errors may not be reported until running the query, such as the property name is invalid or if
$low or $high are not numeric and the property specified is a numeric property.

Once a query is run you cannot change the limit settings without calling the ResetSearchLimit
method first.

$search->ResetSearchLimit ;

Clears the limit parameters for the given object. This must be called if the limit parameters need to be
changed.

$search->SetSort($sort_string);

Sets the sort order of search results. The string is a space separated list of valid document properties.
Each property may contain a qualifier that sets the direction of the sort.

193 1 Dec 2005

11.5.2 SWISH::API::Search - Search ObjectsSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

For example, to sort the results by path name in ascending order and by rank in descending order:

 $search->SetSort(’swishdocpath asc swishrank desc’);

The "asc" and "desc" qualifiers are optional, and if omitted ascending is assumed.

Currently, errors (e.g invalid property name) are not detected on this call, but rather when executing a
query. This may change in the future.

11.5.3 SWISH::API::Results - Generating and accessing results

Searching generates a results object blessed into the SWISH::API::Results class.

$results = $search->Execute($query);

Executes a query based on the parameters in the search object. $query is an optional query string to
use for the search ($query replaces the set query string in the search object).

A typical use would be to create a search object once and then call this method for each query using
the same search object changing only the passed in $query.

The caller should check for errors after making this all.

11.5.4 Results Methods

A query creates a results object that contains information about the query (e.g. number of hits) and access
to the individual results.

$hits = $results->Hits;

Returns the number of results for the query. If zero and no errors were reported after calling
$search->Execute then the query returned zero results.

@parsed_words = $results->ParsedWords($index_name);

Returns an array of tokenized words and operators with stopwords removed. This is the array of
tokens used by swish for the query.

$index_name must match one of the index files specified on the creation of the swish object (via
the SWISH::API->new call).

The parsed words are useful for highlighting search terms in associated documents.

@removed_stopwords = $results->RemovedStopwords($index_name) ;

 1 Dec 2005194

11.5.3 SWISH::API::Results - Generating and accessing results

Returns an array of stopwords removed from a query, if any, for the index specified.

$index_name must match one of the index files specified on the creation of the swish object (via
the SWISH::API->new call).

$results->SeekResult($position);

Seeks to the position specified in the result list. Zero is the first position and $results->Hits-1 is the
last position. Seeking past the end of results sets a non-critical error condition.

Useful for seeking to a specific "page" of results.

$result = $results->NextResult;

Fetches the next result from the list of results. Returns undef if no more results are available.
$result is an object blessed into the SWISH::API::Result class.

11.5.5 SWISH::API::Result - Result Methods

The follow methods provide access to data related to an individual result.

$prop = $result->Property($prop_name);

Fetches the property specified for the current result. An invalid property name will cause an excep-
tion (which can be caught by wrapping the call in an eval block).

Can return undefined.

Date properties are returned as a timestamp. Use something like Date::Format to format the strings
(or just call scalar local time ($prop)).

$prop = $result->ResultPropertyStr ($prop_name);

Fetches and formats the property. Unlike above, invalid property names return the string "(null)" --
this will likely change to match the above (i.e. throw an exception).

Undefined values are returned at the null string ("").

$value = $result->ResultIndexValue($header_name);

Returns the header value specified. This is similar to $swish->HeaderValue(), but the index file is not
specified (it is determined by the result).

11.5.6 Utility Methods

@metas = $swish->MetaList($index_name);

195 1 Dec 2005

11.5.5 SWISH::API::Result - Result MethodsSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

Swish-e has "MetaNames" which allow searching by fields in the index. This method returns infor-
mation about the Metanames.

Pass in the name of an open index file name and returns a list of SWISH::API::MetaName objects.
Three methods are currently defined on these objects:

 $meta->Name;
 $meta->ID;
 $meta->Type;

Name returns the name of the meta as defined in the MetaNames config option when the index was
created.

The ID is the internal ID number used to represent the meta name.

Type is the type of metaname. Currently only one type exists and its value is zero.

@props = $swish->PropertyList ($index_name);

Swish-e can store content or "properties" in the index and return this data when running a query. A
document’s path, URL, title, size, date or summary are examples of properites. Each property is
accessed via its PropertyName. This method returns information about the PropertNames stored in
the index.

Pass in the name of an open index file name and returns a list of SWISH::API::MetaName objects.
Three methods are currently defined on these objects:

 $prop->Name;
 $prop->ID;
 $prop->Type;

Name returns the name of the meta as defined in the MetaNames config option when the index was
created.

The ID is the internal ID number used to represent the meta name.

Type is the type of metaname. Currently only one type exists and its value is zero.

@propes = $result->PropertyList ;

@meta = $result->MetaList;

These also return a list of Property or Metaname description objects, but are accessed via a result
record. Since the result comes from a specific index file there’s no need to specify the index file
name.

 1 Dec 2005196

11.5.6 Utility Methods

$stemmed_word = $swish->StemWord($word);

Deprecated

Returns the stemmed version of the passed in word.

Deprecated because only stems using the original Porter Stemmer and uses a shared memory location
in the SW_HANDLE object to store the stemmed word. See below for other stemming options.

$fuzzy_word = $swish->Fuzzy($indexname, $word);

Like StemWord used to work, only it uses whatever stemmer is named in $indexname. Returns the
same kind of fuzzy_word object as the Fuzzy Word() method.

$mode_string = $result->FuzzyMode;

Returns the string (e.g. "Stemming_en", "Soundex", "None") indicating the stemming method used
while indexing the given document.

$fuzzy_word = $result->FuzzyWord($word);

Converts $word using the same fuzzy mode used to index the $result. Returns a
SWISH::API::FuzzyWord object. Methods on the object are used to access the converted words and
other data as shown below.

$count = $fuzzy_word->WordCount;

Returns the number of output words. Normally this is the value one, but may be more depending on
the stemmer used. DoubleMetaphone can return two strings for a single input string.

$status = $fuzzy_word->WordError ;

Returns any error code that the stemmer might set. Normally, this return value is zero, indicating that
the stemming/fuzzy operation succedded. The values returned are defined in the swish-e source file
/src/stemmer.h.

@words = $fuzzy_word->WordList;

Returns the converted words from the stemming/fuzzy operation. Normally, the array will contain a
single element, although may contain more (i.e. if DoubleMetaphone is used and the input word
returns two strings).

In the event that a word does not stem (e.g. trying to stem a number), this method will return the orig-
inal input word specified when $result->FuzzyWord($word) was called.

@parsed_words = $swish->SwishWords($string, $index_file);

197 1 Dec 2005

11.5.6 Utility MethodsSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

* Not implemented *

Splits up the input string into tokens of swish words and operators.

11.6 NOTES
Perl’s garbage collection makes it easy to write code for searching with Swish-e, but care must be
taken not to keep objects around too long which can use up memory.

Here’s an example of a potential problem. Say you have a very large number of documents indexed
and you want to find the first hit for a number of popular keywords (error checking omitted in this
bad example):

 sub first_hit {
 my $query = shift;
 my $handle = SWISH::API->new(’index.swish-e’);
 my $results = $handle->Query($query);
 my $first_hit = $results->NextResult;
 return $first_hit;
 }

 my @first_hit_list;
 for (@keywords)
 push @first_hit_list, $first_hit($_);
 }

The first_hit() subroutine is returning a SWISH::Result object. That makes it easy to access
properties:

 # print file names
 for my $result (@first_hit_list) {
 print $result->Property(’swishdocpath’),"\n";
 }

But as long as a SWISH::API::Result object is around, so is the entire list of results generated by the
$handle->Query() call, and the index file is still open (because a SWISH::API::Result depends on a
SWISH::API::Results object, which depends on a SWISH::API object).

In this case it would be better to return from first_hit() just the properties you need:

 ...
 my $first_hit = $results->NextResult;
 return $first_hit->Property(’swishdocpath’);
 }

 1 Dec 2005198

11.6 NOTES

Then when first_hit() sub ends the result list will be freed, and the index file closed, thanks to
Perl’s reference count tracking.

Note: the other problem with the above code is that the same index file is opened for each call to the
function. Don’t do that, instead open the index file once.

11.7 COPYRIGHT
This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

11.8 AUTHOR
Bill Moseley moseley@hank.org. 2002/2003/2004

11.9 SUPPORT
Please contact the Swish-e discussion email list for support with this module or with Swish-e. Please
do not contact the developers directly.

199 1 Dec 2005

11.7 COPYRIGHTSWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

12 swish.cgi -- Example Perl script for searching with
the SWISH-E search engine.

 1 Dec 2005200

12 swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

12.1 DESCRIPTION
swish.cgi is a CGI script for searching with the SWISH-E search engine version 2.1-dev and above. It
returns results a page at a time, with matching words from the source document highlighted, showing a
few words of content on either side of the highlighted word.

The script is highly configurable. Features include searching multiple (or selectable) indexes, limit ing
searches to a subset of documents, sorting by a number of different properties, and limit ing results to a
date range.

On unix type systems the swish.cgi script is installed in the directory $prefix/lib/swish-e, which is typi-
cally /usr/local/lib/swish-e. This can be overridden by the configure options --prefix or --libexecdir.

The standard configuration (i.e. not using a config file) should work with most swish index files.
Customization of the parameters will be needed if you are indexing special meta data and want to search
and/or display the meta data. The configuration can be modified by editing this script directly, or by using
a configuration file (.swishcgi.conf by default). The script’s configuration file is described below.

You are strongly encouraged to get the default configuration working before making changes. Most prob-
lems using this script are the result of configuration modifications.

The script is modular in design. Both the highlighting code and output generation is handled by modules,
which are included in the example/modules distribution directory and installed in the $libexecdir/perl
directory. This allows for easy customization of the output without changing the main CGI script.

Included with the Swish-e distribution is a module to generate standard HTML output. There’s also
modules and template examples to use with the popular Perl templating systems HTML::Template and
Template-Toolkit. This is very useful if your site already uses one of these templating systems The
HTML::Template and Template-Toolkit packages are not distributed with Swish-e. They are available
from the CPAN (http://search.cpan.org).

This scipt can also run basically unmodified as a mod_perl handler, providing much better performance
than running as a CGI script. Usage under mod_perl is described below.

Please read the rest of the documentation. There’s a DEBUGGING section, and a FAQ section.

This script should work on Windows, but security may be an issue.

12.2 REQUIREMENTS
A reasonably current version of Perl. 5.00503 or above is recommended (anything older will not be
supported).

The Date::Calc module is required to use the date range feature of the script. The Date::Calc module is
also available from CPAN.

201 1 Dec 2005

12.1 DESCRIPTIONSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

12.3 INSTAL LA TION
Here’s an example installation session under Linux. It should be similar for other operating systems.

For the sake of simplicity in this installation example all files are placed in web server space, including
files such as swish-e index and configuration files that would normally not be made available via the web
server. Access to these files should be limited once the script is running. Either move the files to other
locations (and adjust the script’s configuration) or use features of the web server to limit access (such as
with .htaccess).

Please get a simple installation working before modifying the configuration file. Most problems reported
for using this script have been due to improper configuration.

The script’s default settings are setup for initial testing. By default the settings expect to find most files
and the swish-e binary in the same directory as the script.

For security reasons, once you have tested the script you will want to change settings to limit access to
some of these files by the web server (either by moving them out of web space, or using access control
such as .htaccess). An example of using .htaccess on Apache is given below.

It’s expected that swish-e has already been unpacked and the swish-e binary has be compiled from source
and "make install" has been run. If swish-e was installed from a vendor package (such as from a RPM or
Debian package) see that pakage’s documentation for where files are installed.

Example Installation:

1. Symlink or copy the swish.cgi.

Symlink (or copy if your platform or webserver does not allow symlinks) the swish.cgi script from
the installation directory to a local directory. Typically, this would be the cgi-bin directory or a loca-
tion where CGI script are located. In this example a new directory is created and the script is
symlinked.

 ~$ mkdir swishdir
 ~$ cd swishdir
 ~/swishdir$ ln -s /usr/local/lib/swish-e/swish.cgi

The installation directory is set at configure time with the --prefix or --libexecdir options, but by
default is in /usr/local/lib/swish-e.

2. Create an index

Use an editor and create a simple configuration file for indexing your files. In this example the
Apache documentation is indexed. Last we run a simple query to test that the index works correctly.

 1 Dec 2005202

12.3 INSTALLATION

 ~/swishdir$ cat swish.conf
 IndexDir /usr/local/apache/htdocs
 IndexOnly .html .htm
 DefaultContents HTML*
 StoreDescription HTML* <body> 200000
 MetaNames swishdocpath swishtitle
 ReplaceRules remove /usr/local/apache/

If you do not have the Apache docs installed then pick another directory to index such as
/usr/share/doc.

Create the index.

 ~/swishdir$ swish-e -c swish.conf
 Indexing Data Source: "File-System"
 Indexing "/usr/local/apache/htdocs"
 Removing very common words...
 no words removed.
 Writing main index...
 Sorting words ...
 Sorting 7005 words alphabetically
 Writing header ...
 Writing index entries ...
 Writing word text: Complete
 Writing word hash: Complete
 Writing word data: Complete
 7005 unique words indexed.
 5 properties sorted.
 124 files indexed. 1485844 total bytes. 171704 total words.
 Elapsed time: 00:00:02 CPU time: 00:00:02
 Indexing done!

Now, verify that the index can be searched:

 ~/swishdir$ swish-e -w install -m 1
 # SWISH format: 2.1-dev-25
 # Search words: install
 # Number of hits: 14
 # Search time: 0.001 seconds
 # Run time: 0.040 seconds
 1000 htdocs/manual/dso.html "Apache 1.3 Dynamic Shared Object (DSO) support" 17341
 .

Let’s see what files we have in our directory now:

 ~/swishdir$ ls -1
 index.swish-e
 index.swish-e.prop
 swish.cgi
 swish.conf

203 1 Dec 2005

12.3 INSTALLATIONSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

3. Test the CGI script

This is a simple step, but often overlooked. You should test from the command line instead of
jumping ahead and testing with the web server. See the DEBUGGING section below for more infor-
mation.

 ~/swishdir$./swish.cgi | head
 Content-Type: text/html; charset=ISO-8859-1

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Search our site
 </title>
 </head>
 <body>

The above shows that the script can be run directly, and generates a correct HTTP header and
HTML.

If you run the above and see something like this:

 ~/swishdir >./swish.cgi
 bash: ./swish.cgi: No such file or directory

then you probably need to edit the script to point to the correct location of your perl program. Here’s
one way to find out where perl is located (again, on unix):

 ~/swishdir$ which perl
 /usr/local/bin/perl

 ~/swishdir$ /usr/local/bin/perl -v
 This is perl, v5.6.0 built for i586-linux
 ...

Good! We are using a reasonably current version of perl.

Now that we know perl is at /usr/local/bin/perl we can adjust the "shebang" line in the perl script
(e.g. the first line of the script):

 ~/swishdir$ pico swish.cgi
 (edit the #! line)
 ~/swishdir$ head -1 swish.cgi
 #!/usr/local/bin/perl -w

 1 Dec 2005204

12.3 INSTALLATION

4. Test with the web server

How you do this is completely dependent on your web server, and you may need to talk to your web
server admin to get this working. Often files with the .cgi extension are automatically set up to run as
CGI scripts, but not always. In other words, this step is really up to you to figure out!

This example shows creating a symlink from the web server space to the directory used above. This
will only work if the web server is configured to follow symbolic links (the default for Apache).

This operation requires root access:

 ~/swishdir$ su -c "ln -s $HOME/swishdir /usr/local/apache/htdocs/swishdir"
 Password: *********

If your account is on an ISP and your web directory is ~/public_html the you might just move the
entire directory:

 mv ~/swishdir ~/public_html

Now, let’s make a real HTTP request:

 ~/swishdir$ GET http://localhost/swishdir/swish.cgi | head -3
 #!/usr/local/bin/perl -w
 package SwishSearch;
 use strict;

Oh, darn. It looks like Apache is not running the script and instead returning it as a static page.
Apache needs to be told that swish.cgi is a CGI script.

.htaccess comes to the rescue:

 ~/swishdir$ cat .htaccess

 # Deny everything by default
 Deny From All

 # But allow just CGI script
 <files swish.cgi>
 Options ExecCGI
 Allow From All
 SetHandler cgi-script
 </files>

That "Deny From All" prevents access to all files (such as config and index files), and only access is
allowed to the swish.cgi script.

205 1 Dec 2005

12.3 INSTALLATIONSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

http://localhost/swishdir/swish.cgi

Let’s try the request one more time:

 ~/swishdir >GET http://localhost/swishdir/swish.cgi | head
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Search our site
 </title>
 </head>
 <body>
 <h2>

That looks better! Now use your web browser to test.

Now, you may note that the links are not valid on the search results page. The swish config file
contained the line:

 ReplaceRules remove /usr/local/apache/

To make those links works (and assuming your web server will follow symbolic links):

 ~/swishtest$ ln -s /usr/local/apache/htdocs

BTW - "GET" used above is a program included with Perl’s LWP library. If you do no have this you
might try something like:

 wget -O - http://localhost/swishdir/swish.cgi | head

and if nothing else, you can always telnet to the web server and make a basic request.

 ~/swishtest$ telnet localhost 80
 Trying 127.0.0.1...
 Connected to localhost.
 Escape character is ’^]’.
 GET /swishtest/swish.cgi http/1.0

 HTTP/1.1 200 OK
 Date: Wed, 13 Feb 2002 20:14:31 GMT
 Server: Apache/1.3.20 (Unix) mod_perl/1.25_01
 Connection: close
 Content-Type: text/html; charset=ISO-8859-1

 1 Dec 2005206

12.3 INSTALLATION

http://localhost/swishdir/swish.cgi
http://swish-e.org">/
http://localhost/swishdir/swish.cgi

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Search our site
 </title>
 </head>
 <body>

This may seem like a lot of work compared to using a browser, but browsers are a poor tool for basic
CGI debugging.

If you have problems check the DEBUGGING section below.

12.4 CONFIGURATION
If you want to change the location of the swish-e binary or the index file, use multiple indexes, add addi-
tional metanames and properties, change the default highlighting behavior, etc., you will need to adjust the
script’s configuration settings.

Again, please get a test setup working with the default parameters before making changes to any configu-
ration settings. Better to debug one thing at a time...

In general, you will need to adjust the script’s settings to match the index file you are searching. For
example, if you are indexing a hypermail list archive you may want to make the script use
metanames/properties of Subject, Author, and, Email address. Or you may wish to provide a way to limit
searches to subsets of documents (e.g. parts of your directory tree).

To make things somewhat "simple", the configuration parameters are included near the top of the
swish.cgi program. That is the only place that the individual parameters are defined and explained, so you
will need to open up the swish.cgi script in an editor to view the options. Further questions about individ-
ual settings should be referred to the swish-e discussion list.

The parameters are all part of a perl hash structure, and the comments at the top of the program should
get you going. The perl hash structure may seem a bit confusing, but it makes it easy to create nested and
complex parameters. Syntax is important, so cut-n-paste should be your best defense if you are not a perl
programmer.

By the way, Perl has a number of quote operators. For example, to quote a string you might write:

 title => ’Search My Site’,

Some options take more than one parameter, where each parameter must be quoted. For example:

 metanames => [’swishdefault’, ’swishtitle’, ’swishdocpath’],

207 1 Dec 2005

12.4 CONFIGURATIONSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

which assigns an array ([...]) of three strings to the "metanames" variable. Lists of quoted strings are so
common in perl that there’s a special operator called "qw" (quote word) to save typing all those quotes:

 metanames => [qw/ swishdefault swishtitle swishdocpath /],

or to use the parenthesis as the quote character (you can pick any):

 metanames => [qw(swishdefault swishtitle swishdocpath)],

There are two options for changing the configuration settings from their default values: One way is to edit
the script directly, or the other was is to use a separate configuration file. In either case, the configuration
settings are a basic perl hash reference.

Using a configuration file is described below, but contains the same hash structure.

There are many configuration settings, and some of them are commented out either by using a "#" symbol,
or by simply renaming the configuration directive (e.g. by adding an "x" to the parameter name).

A very basic configuration setup might look like:

 return {
 title => ’Search the Swish-e list’, # Title of your choice.
 swish_binary => ’swish-e’, # Location of swish-e binary
 swish_index => ’index.swish-e’, # Location of your index file
 };

Or if searching more than one index:

 return {
 title => ’Search the Swish-e list’,
 swish_binary => ’swish-e’,
 swish_index => [’index.swish-e’, ’index2’],
 };

Both of these examples return a reference to a perl hash (return {...}). In the second example, the
multiple index files are set as an array reference.

Note that in the example above the swish-e binary file is relative to the current directory. If running under
mod_perl you will need to use absolute paths.

The script can also use the SWISH::API perl module (included with the swish-e distribution in the perl
directory) to access the swish-e index. The use_library option is used to enable the use of the
SWISH::API module:

 1 Dec 2005208

12.4 CONFIGURATION

 return {
 title => ’Search the Swish-e list’,
 swish_index => [’index.swish-e’, ’index2’],
 use_library => 1, # enable use of the SWISH::API module
 };

The module must be available via the @INC array, like all Perl modules.

Using the SWISH::API module avoids the need to fork and execute a the swish-e program. Under
mod_perl you will may see a significant performance improvement when using the SWISH::API module.
Under normal CGI usage you will probably not see any speed improvements.

Using A Configuration File

As mentioned above, configuration settings can be either set in the swish.cgi script, or set in a separate
configuration file. Settings in a configuration file will override the settings in the script.

By default, the swish.cgi script will attempt to read settings from the file .swishcgi.conf. For example, you
might only wish to change the title used in the script. Simply create a file called .swishcgi.conf in the same
directory as the CGI script:

 > cat .swishcgi.conf
 # Example swish.cgi configuration script.
 return {
 title => ’Search Our Mailing List Archive’,
 };

The settings you use will depend on the index you create with swish:

 return {
 title => ’Search the Apache documentation’,
 swish_binary => ’swish-e’,
 swish_index => ’index.swish-e’,
 metanames => [qw/swishdefault swishdocpath swishtitle/],
 display_props => [qw/swishtitle swishlastmodified swishdocsize swishdocpath/],
 title_property => ’swishdocpath’,
 prepend_path => ’ http://myhost/apachedocs ’,

 name_labels => {
 swishdefault => ’Search All’,
 swishtitle => ’Title’,
 swishrank => ’Rank’,
 swishlastmodified => ’Last Modified Date’,
 swishdocpath => ’Document Path’,
 swishdocsize => ’Document Size’,
 },

 };

209 1 Dec 2005

12.4 CONFIGURATIONSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

http://myhost/apachedocs

The above configuration defines metanames to use on the form. Searches can be limited to these
metanames.

"display_props" tells the script to display the property "swishlastmodified" (the last modified date of the
file), the document size, and path with the search results.

The parameter "name_labels" is a hash (reference) that is used to give friendly names to the metanames.

Here’s another example. Say you want to search either (or both) the Apache 1.3 documentation and the
Apache 2.0 documentation indexed seperately.

 return {
 title => ’Search the Apache Documentation’,
 date_ranges => 0,
 swish_index => [qw/ index.apache index.apache2 /],
 select_indexes => {
 method => ’checkbox_group’,
 labels => [’1.3.23 docs’, ’2.0 docs’], # Must match up one-to-one to swish_index
 description => ’Select: ’,
 },

 };

Now you can select either or both sets of documentation while searching.

All the possible settings are included in the default configuration located near the top of the swish.cgi
script. Open the swish.cgi script with an editor to look at the various settings. Contact the Swish-e Discus-
sion list for help in configuring the script.

12.5 DEBUGGING
Most problems with using this script have been a result of improper configuration. Please get the script
working with default settings before adjusting the configuration settings.

The key to debugging CGI scripts is to run them from the command line, not with a browser.

First, make sure the program compiles correctly:

 $ perl -c swish.cgi
 swish.cgi syntax OK

Next, simply try running the program:

 $./swish.cgi | head
 Content-Type: text/html; charset=ISO-8859-1

 1 Dec 2005210

12.5 DEBUGGING

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 <html>
 <head>
 <title>
 Search our site
 </title>
 </head>
 <body>

Under Windows you will need to run the script as:

 C:\wwwroot\swishtest> perl swish.cgi

Now, you know that the program compiles and will run from the command line. Next, try accessing the
script from a web browser.

If you see the contents of the CGI script instead of its output then your web server is not configured to run
the script. With Apache look at settings like ScriptAl ias, SetHandler, and Options.

If an error is reported (such as Internal Server Error or Forbidden) you need to locate your web server’s
error_log file and carefully read what the problem is. Contact your web administrator for help locating the
web server’s error log.

If you don’t have access to the web server’s error_log file, you can modify the script to report errors to the
browser screen. Open the script and search for "CGI::Carp". (Author’s suggestion is to debug from the
command line -- adding the browser and web server into the equation only complicates debugging.)

The script does offer some basic debugging options that allow debugging from the command line. The
debugging options are enabled by setting an environment variable "SWISH_DEBUG". How that is set
depends on your operating system and the shell you are using. These examples are using the "bash" shell
syntax.

Note: You can also use the "debug_options" configuration setting, but the recommended method is to set
the environment variable.

You can list the available debugging options like this:

 $ SWISH_DEBUG=help ./swish.cgi >outfile
 Unknown debug option ’help’. Must be one of:
 basic: Basic debugging
 command: Show command used to run swish
 headers: Show headers returned from swish
 output: Show output from swish
 summary: Show summary of results
 dump: Show all data available to templates

Debugging options may be combined:

211 1 Dec 2005

12.5 DEBUGGINGSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

 $ SWISH_DEBUG=command,headers,summary ./swish.cgi >outfile

You will be asked for an input query and the max number of results to return. You can use the defaults in
most cases. It’s a good idea to redirect output to a file. Any error messages are sent to stderr, so those will
still be displayed (unless you redirect stderr, too).

Here are some examples:

 ~/swishtest$ SWISH_DEBUG=basic ./swish.cgi >outfile
 Debug level set to: 1
 Enter a query [all]:
 Using ’not asdfghjklzxcv’ to match all records
 Enter max results to display [1]:

 ------ Can’t use DateRanges feature ------------

 Script will run, but you can’t use the date range feature
 Can’t locate Date/Calc.pm in @INC (@INC contains: modules /usr/local/lib/perl5/5.6.0/i586-linux /usr/local/lib/perl5/5.6.0 /usr/local/lib/perl5/site_perl/5.6.0/i586-linux /usr/local/lib/perl5/site_perl/5.6.0 /usr/local/lib/perl5/site_perl/5.005/i586-linux /usr/local/lib/perl5/site_perl/5.005 /usr/local/lib/perl5/site_perl .) at modules/DateRanges.pm line 107, <STDIN> line 2.
 BEGIN failed--compilation aborted at modules/DateRanges.pm line 107, <STDIN> line 2.
 Compilation failed in require at ./swish.cgi line 971, <STDIN> line 2.

 Can’t exec "./swish-e": No such file or directory at ./swish.cgi line 1245, <STDIN> line 2.
 Child process Failed to exec ’./swish-e’ Error: No such file or directory at ./swish.cgi line 1246, <STDIN> line 2.
 Failed to find any results

The above indicates two problems. First problem is that the Date::Calc module is not installed. The
Date::Calc module is needed to use the date limit ing feature of the script.

The second problem is a bit more serious. It’s saying that the script can’t find the swish-e binary file. In
this example it’s specified as being in the current directory. Either correct the path to the swish-e binary,
or make a local copy or symlink to the swish-e binary.

 ~/swishtest$ cat .swishcgi.conf
 return {
 title => ’Search the Apache Documentation’,
 swish_binary => ’/usr/local/bin/swish-e’,
 date_ranges => 0,
 };

Now, let’s try again:

 ~/swishtest$ SWISH_DEBUG=basic ./swish.cgi >outfile
 Debug level set to: 1

 1 Dec 2005212

12.5 DEBUGGING

 ---------- Read config parameters from ’.swishcgi.conf’ ------
 $VAR1 = {
 ’date_ranges’ => 0,
 ’title’ => ’Search the Apache Documentation’
 };

 Enter a query [all]:
 Using ’not asdfghjklzxcv’ to match all records
 Enter max results to display [1]:
 Found 1 results

 Can’t locate SWISH::TemplateDefault.pm in @INC (@INC contains: modules /usr/local/lib/perl5/5.6.0/i586-linux /usr/local/lib/perl5/5.6.0 /usr/local/lib/perl5/site_perl/5.6.0/i586-linux /usr/local/lib/perl5/site_perl/5.6.0 /usr/local/lib/perl5/site_perl/5.005/i586-linux /usr/local/lib/perl5/site_perl/5.005 /usr/local/lib/perl5/site_perl .) at ./swish.cgi line 608.

This means that the swish.cgi script could not locate a required module. To correct this locate where the
SWISH::Template module is installed and add a "use lib" line to your configuration file (or to the
swish.cgi script):

 ~/swishtest$ cat .swishcgi.conf
 use lib ’/home/bill/local/lib/perl’;

 return {
 title => ’Search the Apache Documentation’,
 date_ranges => 0,
 };

 ~/swishtest$ SWISH_DEBUG=basic ./swish.cgi >outfile
 Debug level set to: 1

 ---------- Read config parameters from ’.swishcgi.conf’ ------
 $VAR1 = {
 ’date_ranges’ => 0,
 ’title’ => ’Search the Apache Documentation’
 };

 Enter a query [all]:
 Using ’not asdfghjklzxcv’ to match all records
 Enter max results to display [1]:
 Found 1 results

That is much better!

The "use lib" statement tells Perl where to look for modules by adding the path supplied to an array called
@INC.

Note that most modules are in the SWISH namespace. For example, the default output module is called
SWISH::TemplateDefault. When Perl is looking for that module it is looking for the file SWISH/Templat-
eDefault.pm. If the "use lib" statement is set as:

213 1 Dec 2005

12.5 DEBUGGINGSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

 use lib ’/home/bill/local/lib/perl’;

then Perl will look (among other places) for the file

 /home/bill/local/lib/perl/SWISH/TemplateDefault.pm

when attempting to load the SWISH::TemplateDefault module. Relative paths may also be used.

 use lib ’modules’;

will cause Perl to look for the file:

 ./modules/SWISH/TemplateDefault.pm

relative to where the swish.cgi script is running. (This is not true when running under mod_perl).

Here’s another common problem. Everything checks out, but when you run the script you see the
message:

 Swish returned unknown output

Ok, let’s find out what output it is returning:

 ~/swishtest$ SWISH_DEBUG=headers,output ./swish.cgi >outfile
 Debug level set to: 13

 ---------- Read config parameters from ’.swishcgi.conf’ ------
 $VAR1 = {
 ’swish_binary’ => ’/usr/local/bin/swish-e’,
 ’date_ranges’ => 0,
 ’title’ => ’Search the Apache Documentation’
 };

 Enter a query [all]:
 Using ’not asdfghjklzxcv’ to match all records
 Enter max results to display [1]:
 usage: swish [-i dir file ...] [-S system] [-c file] [-f file] [-l] [-v (num)]
 ...
 version: 2.0
 docs: http://sunsite.berkeley.edu/SWISH-E/

 *** 9872 Failed to run swish: ’Swish returned unknown output’ ***
 Failed to find any results

 1 Dec 2005214

12.5 DEBUGGING

http://sunsite.berkeley.edu/SWISH-E/

Oh, looks like /usr/local/bin/swish-e is version 2.0 of swish. We need 2.1-dev and above!

12.6 Frequently Asked Questions
Here’s some common questions and answers.

12.6.1 How do I change the way the output looks?

The script uses a module to generate output. By default it uses the SWISH::TemplateDefault.pm module.
The module used is selected in the swish.cgi configuration file. Modules are located in the
example/modules/SWISH directory in the distribution, but are installed in the
$prefix/lib/swish-e/perl/SWISH/ directory.

To make simple changes you can edit the installed SWISH::TemplatDefault module directly, otherwise
make a copy of the module and modify its package name. For example, change directories to the location
of the installed module and copy the module to a new name:

 $ cp TemplateDefault.pm MyTemplateDefault.pm

Then at the top of the module adjust the "package" line to:

 package SWISH::MyTemplateDefault;

To use this modules you need to adjust the configuration settings (either at the top of swish.cgi or in a
configuration file:

 template => {
 package => ’SWISH::MyTemplateDefault’,
 },

The module does not need to be in the SWISH namespace, and can be stored in any location as long as the
module can be found via the @INC array (i.e. modify the "use lib" statement in swish.cgi if needed).

12.6.2 How do I use a templating system with swish.cgi?

In addition to the TemplateDefault.pm module, the swish-e distribution includes two other Perl modules
for generating output using the templating systems HTML::Template and Template-Toolkit.

Templating systems use template files to generate the HTML, and make maintaining the look of a large
(or small) site much easier. HTML::Template and Template-Toolkit are separate packages and can be
downloaded from the CPAN. See http://search.cpan.org.

215 1 Dec 2005

12.6 Frequently Asked QuestionsSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

http://search.cpan.org./

Two basic templates are provided as examples for generating output using these templating systems. The
example templates are located in the example directory. The module SWISH::TemplateHTMLTemplate
uses the file swish.tmpl to generate its output, while the module SWISH::TemplateToolkit uses the swish.tt
file. (Note: swish.tt was renamed from search.tt Jun 03, 2004.)

To use either of these modules you will need to adjust the "template" configuration setting. Examples for
both templating systems are provided in the configuration settings near the top of the swish.cgi program.

Use of these modules is an advanced usage of swish.cgi and are provided as examples only.

All of the output generation modules are passed a hash with the results from the search, plus other data use
to create the output page. You can see this hash by using the debugging option "dump" or by using the
included SWISH::TemplateDumper module:

 ~/swishtest >cat .swishcgi.conf
 return {
 title => ’Search the Apache Documentation’,
 template => {
 package => ’SWISH::TemplateDumper’,
 },
 };

And run a query. For example:

 http://localhost/swishtest/swish.cgi?query=install

12.6.3 Why are there three different highlighting modules?

Three are three highlighting modules included with the swish-e distribution. Each is a trade-off of speed
vs. accuracy:

 SWISH::DefaultHighlight - reasonably fast, but does not highlight phrases
 SWISH::PhraseHighlight - reasonably slow, but is reasonably accurate
 SWISH::SimpleHighlight - fast, some phrases, but least accurate

Eh, the default is actually "PhraseHighlight". Oh well.

All of the highlighting modules slow down the script. Optimizations to these modules are welcome!

12.6.4 My ISP doesn’t provide access to the web server logs

There are a number of options. One way it to use the CGI::Carp module. Search in the swish.cgi script for:

 use Carp;
 # Or use this instead -- PLEASE see perldoc CGI::Carp for details
 # use CGI::Carp qw(fatalsToBrowser warningsToBrowser);

 1 Dec 2005216

12.6.3 Why are there three different highlighting modules?

http://localhost/swishtest/swish.cgi?query=install

And change it to look like:

 #use Carp;
 # Or use this instead -- PLEASE see perldoc CGI::Carp for details
 use CGI::Carp qw(fatalsToBrowser warningsToBrowser);

This should be only for debugging purposes, as if used in production you may end up sending quite ugly
and confusing messages to your browsers.

12.6.5 Why does the output show (NULL)?

Swish-e displays (NULL) when attempting to display a property that does not exist in the index.

The most common reason for this message is that you did not use StoreDescription in your config file
while indexing.

 StoreDescription HTML* <body> 200000

That tells swish to store the first 200,000 characters of text extracted from the body of each document
parsed by the HTML parser. The text is stored as property "swishdescription".

The index must be recreated after changing the swish-e configuration.

Running:

 ~/swishtest > ./swish-e -T index_metanames

will display the properties defined in your index file.

This can happen with other properties, too. For example, this will happen when you are asking for a prop-
erty to display that is not defined in swish.

 ~/swishtest > ./swish-e -w install -m 1 -p foo
 # SWISH format: 2.1-dev-25
 # Search words: install
 err: Unknown Display property name "foo"
 .

 ~/swishtest > ./swish-e -w install -m 1 -x ’Property foo=<foo>\n’
 # SWISH format: 2.1-dev-25
 # Search words: install
 # Number of hits: 14
 # Search time: 0.000 seconds
 # Run time: 0.038 seconds
 Property foo=(NULL)
 .

217 1 Dec 2005

12.6.5 Why does the output show (NULL)?SWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

To check that a property exists in your index you can run:

 ~/swishtest > ./swish-e -w not dkdk -T index_metanames | grep foo
 foo : id=10 type=70 META_PROP:STRING(case:ignore) *presorted*

Ok, in this case we see that "foo" is really defined as a property. Now let’s make sure swish.cgi is asking
for "foo" (sorry for the long lines):

 ~/swishtest > SWISH_DEBUG=command ./swish.cgi > /dev/null
 Debug level set to: 3
 Enter a query [all]:
 Using ’not asdfghjklzxcv’ to match all records
 Enter max results to display [1]:
 ---- Running swish with the following command and parameters ----
 ./swish-e \
 -w \
 ’swishdefault=(not asdfghjklzxcv)’ \
 -b \
 1 \
 -m \
 1 \
 -f \
 index.swish-e \
 -s \
 swishrank \
 desc \
 swishlastmodified \
 desc \
 -x \
 ’<swishreccount>\t<swishtitle>\t<swishdescription>\t<swishlastmodified>\t<swishdocsize>\t<swishdocpath>\t<fos>\t<swishrank>\t<swishdocpath>\n’ \
 -H \
 9

If you look carefully you will see that the -x parameter has "fos" instead of "foo", so there’s our problem.

12.6.6 How do I use the SWISH::API perl module with swish.cgi?

Use the use_library configuration directive:

 use_library => 1,

This will only provide improved performance when running under mod_perl or other persistent environ-
ments.

12.6.7 Why does the "Run time" differ when using the SWISH::API
module

When using the SWISH::API module the run (and search) times are calculated within the script. When
using the swish-e binary the swish-e program reports the times. The "Run time" may include the time
required to load and compile the SWISH::API module.

12.7 MOD_PERL
This script can be run under mod_perl (see http://perl.apache.org). This will improve the response time of
the script compared to running under CGI by loading the swish.cgi script into the Apache web server.

 1 Dec 2005218

12.7 MOD_PERL

http://perl.apache.org/

You must have a mod_perl enabled Apache server to run this script under mod_perl.

Configuration is simple. In your httpd.conf or your startup.pl file you need to load the script. For example,
in httpd.conf you can use a perl section:

 <perl>
 use lib ’/usr/local/apache/cgi-bin’; # location of the swish.cgi file
 use lib ’/home/yourname/swish-e/example/modules’; # modules required by swish.cgi
 require "swish.cgi";
 </perl>

Again, note that the paths used will depend on where you installed the script and the modules. When
running under mod_perl the swish.cgi script becomes a perl module, and therefore the script does not need
to be installed in the cgi-bin directory. (But, you can actually use the same script as both a CGI script and
a mod_perl module at the same time, read from the same location.)

The above loads the script into mod_perl. Then to configure the script to run add this to your httpd.conf
configuration file:

 <location /search>
 PerlSetVar Swish_Conf_File /home/yourname/swish-e/myconfig.pl
 allow from all
 SetHandler perl-script
 PerlHandler SwishSearch
 </location>

Note that you use the "Swish_Conf_File" setting in httpd.conf to tell the script which config file to use.
This means you can use the same script (and loaded modules) for different search sites (running on the
same Apache server). You can just specify differnt config files for each Location and they can search
different indexes and have a completely different look for each site, but all share the same code.

Note that the config files are cached in the swish.cgi script. Changes to the config file will require restart-
ing the Apache server before they will be reloaded into the swish.cgi script. This avoids calling stat()
for every request.

Unlike CGI, mod_perl does not change the current directory to the location of the script, so your settings
for the swish binary and the path to your index files must be absolute paths (or relative to the server root).

Using the SWISH::API module with mod_perl will provide the most performance improvements. Use of
the SWISH::API module can be enabled by the configuration setting use_library :

 use_library => 1,

Without highlighting code enabled, using the SWISH::API module resulted in about 20 requests per
second, where running the swish-e binary slowed the script down to about 8 requests per second.

219 1 Dec 2005

12.7 MOD_PERLSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

Note that the highlighting code is slow. For the best search performance turn off highlighting. In your
config file you can add:

 highlighting => 0, # disable highlighting

and the script will show the first 500 chars of the description (or whatever you set for "max_chars").
Without highlight one test was processing about 20 request per second. With The "PhraseHighlight"
module that dropped to a little better than two requests per second, "DefaultHighlight" was about 2.3
request per second, and "SimpleHighlight" was about 6 request per second.

Experiement with different highlighting options when testing performance.

Please post to the swish-e discussion list if you have any questions about running this script under
mod_perl.

Here’s some general request/second on an Athlon XP 1800+ with 1/2GB RAM, Linux 2.4.20.

 Highlighting Mode

 None Phrase Default Simple
 Using SWISH::API 45 1.5 2 12
 --
 Using swish-e 12 1.3 1.8 7.5
 binary

As you can see the highlighting code is a limit ing factor.

12.8 SpeedyCGI
SpeedyCGI (also called PersistentPerl) is another way to run Perl scripts persistently. SpeedyCGI is good
if you do not have mod_perl available or do not have root access. SpeedyCGI works on Unix systems by
loading the script into a "back end" process and keeping it in memory between requests. New requests are
passed to the back end processes which avoids the startup time required by a Perl CGI script.

Install SpeedyCGI from http://daemoninc.com/ (your OS may provide a packaged version of SpeedyCGI)
and then change the first line of swish.cgi. For example, if the speedy binary is installed in
/usr/bin/speedy, use the line:

 #! /usr/bin/speedy -w -- -t60

The -w option is passed to Perl, and all options following the double-dash are SpeedyCGI options.

Note that when using SpeedyCGI configuration data is cached in memory. If you change the swish.cgi
configuration file (.swishcgi.conf) then touch the main swish.cgi script to force reloading of configuration
data.

 1 Dec 2005220

12.8 SpeedyCGI

http://daemoninc.com/

12.9 Spidering
There are two ways to spider with swish-e. One uses the "http" input method that uses code that’s part of
swish. The other way is to use the new "prog" method along with a perl helper program called
spider.pl .

Here’s an example of a configuration file for spidering with the "http" input method. You can see that the
configuration is not much different than the file system input method. (But, don’t use the http input
method -- use the -S prog method shown below.)

 # Define what to index
 IndexDir http://www.myserver.name/index.html
 IndexOnly .html .htm

 IndexContents HTML* .html .htm
 DefaultContents HTML*
 StoreDescription HTML* <body> 200000
 MetaNames swishdocpath swishtitle

 # Define http method specific settings -- see swish-e documentation
 SpiderDirectory ../swish-e/src/
 Delay 0

You index with the command:

 swish-e -S http -c spider.conf

Note that this does take longer. For example, spidering the Apache documentation on a local web server
with this method took over a minute, where indexing with the file system took less than two seconds.
Using the "prog" method can speed this up.

Here’s an example configuration file for using the "prog" input method:

 # Define the location of the spider helper program
 IndexDir ../swish-e/prog-bin/spider.pl

 # Tell the spider what to index.
 SwishProgParameters default http://www.myserver.name/index.html

 IndexContents HTML* .html .htm
 DefaultContents HTML*
 StoreDescription HTML* <body> 200000
 MetaNames swishdocpath swishtitle

221 1 Dec 2005

12.9 SpideringSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

http://www.myserver.name/index.html
http://www.myserver.name/index.html

Then to index you use the command:

 swish-e -c prog.conf -S prog -v 0

Spidering with this method took nine seconds.

12.10 Stemmed Indexes
Many people enable a feature of swish called word stemming to provide "fuzzy" search options to their
users. The stemming code does not actually find the "stem" of word, rather removes and/or replaces
common endings on words. Stemming is far from perfect, and many words do not stem as you might
expect. Plus, currently only English is supported. But, it can be a helpful tool for searching your site. You
may wish to create both a stemmed and non-stemmed index, and provide a checkbox for selecting the
index file.

To enable a stemmed index you simply add to your configuration file:

 UseStemming yes

If you want to use a stemmed index with this program and continue to highlight search terms you will
need to install a perl module that will stem words. This section explains how to do this.

The perl module is included with the swish-e distribution. It can be found in the examples directory
(where you found this file) and called something like:

 SWISH-Stemmer-0.05.tar.gz

The module should also be available on CPAN (http://search.cpan.org/).

Here’s an example session for installing the module. (There will be quite a bit of output when running
make.)

 % gzip -dc SWISH-Stemmer-0.05.tar.gz |tar xof -
 % cd SWISH-Stemmer-0.05
 % perl Makefile.PL
 or
 % perl Makefile.PL PREFIX=$HOME/perl_lib
 % make
 % make test

 (perhaps su root at this point if you did not use a PREFIX)
 % make install
 % cd ..

 1 Dec 2005222

12.10 Stemmed Indexes

Use the PREFIX if you do not have root access or you want to install the modules in a local library. If
you do use a PREFIX setting, add a use lib statement to the top of this swish.cgi program.

For example:

 use lib qw(
 /home/bmoseley/perl_lib/lib/site_perl/5.6.0
 /home/bmoseley/perl_lib/lib/site_perl/5.6.0/i386-linux/
);

Once the stemmer module is installed, and you are using a stemmed index, the swish.cgi script will
automatically detect this and use the stemmer module.

12.11 DISCLAIMER
Please use this CGI script at your own risk.

This script has been tested and used without problem, but you should still be aware that any code running
on your server represents a risk. If you have any concerns please carefully review the code.

See http://www.w3.org/Security/Faq/www-security-faq.html

Security on Windows questionable.

12.12 SUPPORT
The SWISH-E discussion list is the place to ask for any help regarding SWISH-E or this example script.
See http://swish-e.org.

Before posting please review:

 http://swish-e.org/2.2/docs/INSTALL.html#When_posting_please_provide_the_

Please do not contact the author or any of the swish-e developers directly.

12.13 LICENSE
swish.cgi $Revision: 1.20 $ Copyright (C) 2001 Bill Moseley search@hank.org Example CGI program
for searching with SWISH-E

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

223 1 Dec 2005

12.11 DISCLAIMERSWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

http://www.w3.org/Security/Faq/www-security-faq.html
http://swish-e.org./
http://swish-e.org/2.2/docs/INSTALL.html#When_posting_please_provide_the_

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

12.14 AUTHOR
Bill Moseley

 1 Dec 2005224

12.14 AUTHOR

13 search.cgi -- Example Perl program for searching
with Swish-e and SWISH::API

225 1 Dec 2005

13 search.cgi -- Example Perl program for searching with Swish-e and SWISH::APISWISH-Enhanced: search.cgi -- Example Perl program for searching with Swish-e and SWISH::API

13.1 DESCRIPTION
This is a very simple program that shows how to use the SWISH::API module in a CGI script or mod_perl
handler using Template-Toolkit to generate output. This program is intended for programmers that want to
create a custom search script.

Unlike swish.cgi this script does not have many features, and provides no external configuration (with the
execption of a few config options under mod_perl). So don’t ask why it doesn’t do something. The point
is that this script is used as a starting point that YOU customize.

13.2 REQUIREMENTS
You must have swish-e and the SWISH::API module installed. See the README and INSTALL docu-
ments in the swish-e distribution. As of this writing SWISH::API is part of the swish-e distribution, but in
the future may be provided as a separate package (provided on the CPAN). In either case SWISH::API is
a separate installation procedure from installing swish-e. The Storable module is also required if using
mod_perl.

This program does require that some modules are installed from CPAN. You will need Template-Toolkit
and HTML::Fill InForm (which depends on HTML::Parser). How those are installed depends on your
computer’s packaging system.

You will need a web server, obviously. The discussion below assumes Apache is used. If you are using
MS IIS take note that IIS works differently in a number of ways.

13.3 OVERVIEW
The search.cgi script and related templates are installed when swish-e is installed. search.cgi is installed
in $prefix/lib/swish-e/ and templates are installed in $prefix/share/swish-e/templates/. $prefix is
/usr/local by default but can be changed when running the swish-e configure script. Upon installation
search.cgi is updated with correct paths to your perl binary and

When running as a CGI script search.cgi is copied or symlinked to the location of your CGI scripts (or
any directory that allows CGI scripts). By default, the search.cgi script looks for the index index.swish-e
in the current directory (that’s what the web server considers the current directory). On Apache running
mod-cgi that’s the same place as the script. On IIS it’s not. If your index is elsewhere you will need to
modify the script.

The script works by parsing the query, calling SWISH::API to run the actual search, then calls
Template-Toolkit to generate the ouput.

The script calls the search.tt template. This template generates the query form and the search results. The
search.tt template uses a Template-Toolkit "WRAPPER" function to wrap the search form and results in
your site’s design. This design is in the page_layout template. The idea is if you use Template-Toolkit to
manage your entire site then your entire site would be formatted by the same page_layout template. The
page_layout template calls two other templates common_header and common_footer to generate a

 1 Dec 2005226

13.1 DESCRIPTION

common header and footer for the site. Those are just demonstrating Template-Toolkit’s features.

The page_layout page only defines the basic structure of the site. The true design of the site is managed by
style sheets. style.css defines the basic layout and markup.css sets fonts and colors.

Note: these style sheets are included directly in the output of the CGI script. In production the style sheets
would be stored as separate style sheet files and imported by the browser instead of directly included in
the search results page.

See the section MOD_PERL below for more on templates.

Highlighting of search terms is provided by the SWISH::PhraseHighlight module. That is a very slow
module, so you may wish to disable it if you expect a lot of traffic.

13.4 INSTAL LA TION EXAMPLE
Enough talking, sometimes it’s nice to see a complete example. Below swish-e is installed in the default
location (/usr/local). The "$" is a normal user prompt, where "#" is a root prompt. Use ./configure --prefix
to install in another location (e.g. if you do not have root access).

Download and install swish-e

 $ wget -q http://swish-e.org/Download/latest.tar.gz
 $ tar zxf latest.tar.gz
 $ cd swish-e-2.x.x
 $ (./configure && make) >/dev/null
 $ make check
 $ su
 # make install
 # exit

Install SWISH::API

 $ cd perl
 $ perl Makefile.PL && make && make test
 $ su
 # make install
 $ exit

Install requried Perl modules. You can install via RPMs, Debs or directly from the CPAN or by using the
CPAN shell.

 # su
 # perl -MCPAN -e ’install Template’
 # perl -MCPAN -e ’install HTML::FillInForm’
 # exit

227 1 Dec 2005

13.4 INSTALLATION EXAMPLESWISH-Enhanced: search.cgi -- Example Perl program for searching with Swish-e and SWISH::API

http://swish-e.org/Download/latest.tar.gz

Now setup the script in someplace that allows CGI scripts.

 $ cd $HOME/apache
 $ ln -s /usr/local/lib/swish-e/search.cgi .
 $ cat .htaccess
 deny from all
 <files search.cgi>
 allow from all
 SetHandler cgi-script
 Options +ExecCGI
 </files>

Create an index

 $ cat swish.config
 IndexOnly .htm .html
 DefaultContents HTML*
 StoreDescription HTML* <body>
 metanames swishtitle swishdocpath

 $ swish-e -c swish.config -i /usr/share/doc/apache-doc/manual

Test the index and the CGI script:

 $ swish-e -w apache -m1 | grep hits
 # Number of hits: 152

 $ lynx -dump http://localhost/apache/search.cgi?query=apache | grep hits
 Showing page 1 (1 - 10 of 152 hits) [3]Next
 ’hits’ => 152,

Now, the above isn’t very helpful because the Apache documentation indexed is not in the web space.
You would likely index content available on your web site.

13.5 Using with SpeedyCGI
Perl CGI script must be compiled for each request. SpeedyCGI is a tool to speed up scripts by running
them persistently. To run search.cgi with SpeedyCGI install the program (you can Google, right?) and
then change the first line of search.cgi to run the speedy program.

For example:

 #!/usr/bin/speedy -w

 1 Dec 2005228

13.5 Using with SpeedyCGI

http://localhost/apache/search.cgi?query=apache

13.6 Using with MOD_PERL
This script can be run directly as a mod_perl handler, and the same code can be used to run multiple sites
by using separate Location directives and passing in a "site id." The script caches in memory different
configurations based on this site id.

Below is a complete httpd.conf file. It requires an Apache httpd that has mod_perl compiled in statically.
It runs mod_perl on a high port (port 5000) listening to all interfaces.

For testing I put this config file in a directory along with search.cgi, but that’s just done to make the
example simple (i.e. so I don’t have to show any absolute paths). Normally the httpd.conf and the
swish.cgi "module" would be in separate locations.

 # httpd.conf -- test file for search.cgi as mod_perl handler

 <ifModule mod_so.c>
 LoadModule mime_module /usr/lib/apache/1.3/mod_mime.so
 </IfModule>

 ErrorLog swish_error_log
 PidFile swish_httpd.pid

 Listen *:5000

 <perl>
 push @PerlSetVar, [
 index => Apache->server_root_relative(’index.swish-e’),
];
 $DocumentRoot = Apache->server_root_relative;
 require "search.cgi";
 </perl>

 NameVirtualHost *:5000
 <VirtualHost *:5000>

 ServerName localhost

 <Location /search>
 SetHandler perl-script
 PerlHandler SwishAPISearch
 </Location>

229 1 Dec 2005

13.6 Using with MOD_PERLSWISH-Enhanced: search.cgi -- Example Perl program for searching with Swish-e and SWISH::API

 <Location /othersite>
 SetHandler perl-script
 PerlHandler SwishAPISearch
 # Define this site
 PerlSetVar site_id othersite
 PerlSetVar title "Some other Site"
 </Location>

 </VirtualHost>

The server is started using this command:

 $ /usr/sbin/apache-perl -d $(pwd) -f $(pwd)/httpd.conf

which says to use the current directory as the ServerRoot. (See comments below.) Stop the server like:

 $ kill ‘cat swish_httpd.pid‘

Then access either:

 http://localhost:5000/search
 http://localhost:5000/othersite

A few Notes:

I like test configurations to not care where things are located. Thus, the above httpd.conf does a few tricks
in the "Perl Section" shown.

First, mod_perl, unlike CGI, doesn’t set the working directory. So, the index file name must be absolute.
This is accomplished by a PerlSetVar entry building the index file name from the ServerRoot.

Second, the DocumentRoot is set to the same as the ServerRoot. The DocumentRoot needs to be set so
search.cgi can figure out the path to the script (for creating next and previous links).

Third, the script is loaded by a require statement. This works only because the current directory "." is
in Perl’s @INC path at Apache start up time and search.cgi is also in the current directory. Normally, set
PERL5LIB on server startup or use a "use lib" line in your startup.pl file to point to the location of
search.cgi.

The "PerlSetVar" lines pass config information into the script. Note that they can be set globally or
specific to a given Location.

The following config options are currently available:

 1 Dec 2005230

13.6 Using with MOD_PERL

http://localhost:5000/search
http://localhost:5000/othersite

site_id

The site_id options allow caching of configurations on a per-site basis. It’s overkill in this example,
but normally you might have expensive configuration processes that you might want to do only once.
But, since there is caching by this id it’s a good id to set a site_id if using more than one Location
directive.

index

This specifies the index file to use. The index file needs to be absolute as discussed above. Example:

 PerlSetVar index /usr/share/swish/site.index

title

This options sets the title that’s passed into the template.

template

Sets the file name of the template use to generate the form. This might be useful if you want an
"advanced" form, for example.

template_path

This can be used to update the path where templates are searched. Useful if you wish to override
templates.

page_size

This allow changing the default number of results shown per page.

13.7 SUPPORT
Not much support is provided. But what support is provided is ONLY provided via the Swish-e discussion
list.

 http://swish-e.org/

13.8 AUTHOR
Bill Moseley

231 1 Dec 2005

13.7 SUPPORTSWISH-Enhanced: search.cgi -- Example Perl program for searching with Swish-e and SWISH::API

http://swish-e.org/

13.9 LICENSE
Copyright 2003, 2004 Bill Moseley. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

13.10 SEE ALSO
SWISH::API, Template, HTML::Fill InForm

 1 Dec 2005232

13.9 LICENSE

14 spider.pl - Example Perl program to spider web
servers

233 1 Dec 2005

14 spider.pl - Example Perl program to spider web serversSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

14.1 SYNOPSIS

 spider.pl [<spider config file>] [<URL> ...]

 # Spider using some common defaults and capture the output
 # into a file

 ./spider.pl default http://myserver.com/ > output.txt

 # or using a config file

 spider.config:
 @servers = (
 {
 base_url => ’ http://myserver.com/ ’,
 email => ’me@myself.com’,
 # other spider settings described below
 },
);

 ./spider.pl spider.config > output.txt

 # or using the default config file SwishSpiderConfig.pl
 ./spider.pl > output.txt

 # using with swish-e

 ./spider.pl spider.config | swish-e -c swish.config -S prog -i stdin

 # or in two steps
 ./spider.pl spider.config > output.txt
 swish-e -c swish.config -S prog -i stdin < output.txt

 # or with compression
 ./spider.pl spider.config | gzip > output.gz
 gzip -dc output.gz | swish-e -c swish.config -S prog -i stdin

 # or having swish-e call the spider directly using the
 # spider config file SwishSpiderConfig.pl:
 swish-e -c swish.config -S prog -i spider.pl

 1 Dec 2005234

14.1 SYNOPSIS

http://myserver.com/
http://myserver.com/

 # or the above but passing passing a parameter to the spider:
 echo "SwishProgParameters spider.config" >> swish.config
 echo "IndexDir spider.pl" >> swish.config
 swish-e -c swish.config -S prog

 Note: When running on some versions of Windows (e.g. Win ME and Win 98 SE)
 you may need to tell Perl to run the spider directly:

 perl spider.pl | swish-e -S prog -c swish.conf -i stdin

 This pipes the output of the spider directly into swish.

14.2 DESCRIPTION
spider.pl is a program for fetching documnts from a web server, and outputs the documents to STDOUT
in a special format designed to be read by Swish-e.

The spider can index non-text documents such as PDF and MS Word by use of filter (helper) programs.
These programs are not part of the Swish-e distribution and must be installed separately. See the section
on filtering below.

A configuration file is noramlly used to control what documents are fetched from the web server(s).
The configuration file and its options are described below. The is also a "default" config suitable for
spidering.

The spider is designed to spider web pages and fetch documents from one host at a time -- offsite links are
not followed. But, you can configure the spider to spider multiple sites in a single run.

spider.pl is distributed with Swish-e and is installed in the swish-e library directory at installation time.
This directory (libexedir) can be seen by running the command:

 swish-e -h

Typically on unix-type systems the spider is installed at:

 /usr/local/lib/swish-e/spider.pl

This spider stores all links in memory while processing and does not do parallel requests.

235 1 Dec 2005

14.2 DESCRIPTIONSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

14.2.1 Running the spider

The output from spider.pl can be captured to a temporary file which is then fed into swish-e:

 ./spider.pl > docs.txt
 swish-e -c config -S prog -i stdin < docs.txt

or the output can be passed to swish-e via a pipe:

 ./spider.pl | swish-e -c config -S prog -i stdin

or the swish-e can run the spider directly:

 swish-e -c config -S prog -i spider.pl

One advantage of having Swish-e run spider.pl is that Swish-e knows where to locate the program (based
on libexecdir compiled into swish-e).

When running the spider without any parameters it looks for a configuration file called SwishSpiderCon-
fig.pl in the current directory. The spider will abort with an error if this file is not found.

A configuration file can be specified as the first parameter to the spider:

 ./spider.pl spider.config > output.txt

If running the spider via Swish-e (i.e. Swish-e runs the spider) then use the Swish-e config option Swish-
ProgParameters to specify the config file:

In swish.config:

 # Use spider.pl as the external program:
 IndexDir spider.pl
 # And pass the name of the spider config file to the spider:
 SwishProgParameters spider.config

And then run Swish-e like this:

 swish-e -c swish.config -S prog

Finally, by using the special word "default" on the command line the spider will use a default configura-
tion that is useful for indexing most sites. It’s a good way to get started with the spider:

 1 Dec 2005236

14.2.1 Running the spider

 ./spider.pl default http://my_server.com/index.html > output.txt

There’s no "best" way to run the spider. I like to capture to a file and then feed that into Swish-e.

The spider does require Perl’s LWP library and a few other reasonably common modules. Most well
maintained systems should have these modules installed. See REQUIREMENTS below for more informa-
tion. It’s a good idea to check that you are running a current version of these modules.

Note: the "prog" document source in Swish-e bypasses many Swish-e configuration settings. For example,
you cannot use the IndexOnly directive with the "prog" document source. This is by design to limit the
overhead when using an external program for providing documents to swish; after all, with "prog", if you
don’t want to index a file, then don’t give it to swish to index in the first place.

So, for spidering, if you do not wish to index images, for example, you will need to either filter by the
URL or by the content-type returned from the web server. See CALLBACK FUNCTIONS below for
more information.

14.2.2 Robots Exclusion Rules and being nice

By default, this script will not spider files blocked by robots.txt. In addition, The script will check for
<meta name="robots"..> tags, which allows finer control over what files are indexed and/or spidered. See
http://www.robotstxt.org/wc/exclusion.html for details.

This spider provides an extension to the <meta> tag exclusion, by adding a NOCONTENTS attribute.
This attribute turns on the no_contents setting, which asks swish-e to only index the document’s title
(or file name if not title is found).

For example:

 <META NAME="ROBOTS" CONTENT="NOCONTENTS, NOFOLLOW">

says to just index the document’s title, but don’t index its contents, and don’t follow any links within the
document. Granted, it’s unlikely that this feature will ever be used...

If you are indexing your own site, and know what you are doing, you can disable robot exclusion by the
ignore_robots_file configuration parameter, described below. This disables both robots.txt and the meta
tag parsing. You may disable just the meta tag parsing by using ignore_robots_headers .

This script only spiders one file at a time, so load on the web server is not that great. And with
libwww-perl-5.53_91 HTTP/1.1 keep alive requests can reduce the load on the server even more (and
potentially reduce spidering time considerably).

Still, discuss spidering with a site’s administrator before beginning. Use the delay_sec to adjust how fast
the spider fetches documents. Consider running a second web server with a limited number of children if
you really want to fine tune the resources used by spidering.

237 1 Dec 2005

14.2.2 Robots Exclusion Rules and being niceSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

http://my_server.com/index.html
http://www.robotstxt.org/wc/exclusion.html

14.2.3 Duplicate Documents

The spider program keeps track of URLs visited, so a document is only indexed one time.

The Digest::MD5 module can be used to create a "fingerprint" of every page indexed and this fingerprint
is used in a hash to find duplicate pages. For example, MD5 will prevent indexing these as two different
documents:

 http://localhost/path/to/some/index.html
 http://localhost/path/to/some/

But note that this may have side effects you don’t want. If you want this file indexed under this URL:

 http://localhost/important.html

But the spider happens to find the exact content in this file first:

 http://localhost/developement/test/todo/maybeimportant.html

Then only that URL will be indexed.

14.2.4 Broken relative links

Sometimes web page authors use too many /../ segments in relative URLs which reference documents
above the document root. Some web servers such as Apache will return a 400 Bad Request when request-
ing a document above the root. Other web servers such as Micorsoft IIS/5.0 will try and "correct" these
errors. This correction will lead to loops when spidering.

The spider can fix these above-root links by placing the following in your spider config:

 remove_leading_dots => 1,

It is not on by default so that the spider can report the broken links (as 400 errors on sane webservers).

14.2.5 Compression

If The Perl module Compress::Zlib is installed the spider will send the

 Accept-Encoding: gzip

header and uncompress the document if the server returns the header

 1 Dec 2005238

14.2.3 Duplicate Documents

http://localhost/path/to/some/index.html
http://localhost/path/to/some/
http://localhost/important.html
http://localhost/developement/test/todo/maybeimportant.html

 Content-Encoding: gzip

MD5 checksomes are done on the compressed data.

MD5 may slow down indexing a tiny bit, so test with and without if speed is an issue (which it probably
isn’t since you are spidering in the first place). This feature will also use more memory.

14.3 REQUIREMENTS
Perl 5 (hopefully at least 5.00503) or later.

You must have the LWP Bundle on your computer. Load the LWP::Bundle via the CPAN.pm shell, or
download libwww-perl-x.xx from CPAN (or via ActiveState’s ppm utility). Also required is the the
HTML-Parser-x.xx bundle of modules also from CPAN (and from ActiveState for Windows).

 http://search.cpan.org/search?dist=libwww-perl
 http://search.cpan.org/search?dist=HTML-Parser

You will also need Digest::MD5 if you wish to use the MD5 feature. HTML::Tagset is also required.
Other modules may be required (for example, the pod2xml.pm module has its own requirementes -- see
perldoc pod2xml for info).

The spider.pl script, like everyone else, expects perl to live in /usr/local/bin. If this is not the case then
either add a symlink at /usr/local/bin/perl to point to where perl is installed or modify the shebang (#!) line
at the top of the spider.pl program.

Note that the libwww-perl package does not support SSL (Secure Sockets Layer) (https) by default. See
README.SSL included in the libwww-perl package for information on installing SSL support.

14.4 CONFIGURATION FILE
The spider configuration file is a read by the script as Perl code. This makes the configuration a bit more
complex than simple text config files, but allows the spider to be configured programmatically.

For example, the config file can contain logic for testing URLs against regular expressions or even against
a database lookup while running.

The configuration file sets an array called @servers . This array can contain one or more hash structures
of parameters. Each hash structure is a configuration for a single server.

Here’s an example:

239 1 Dec 2005

14.3 REQUIREMENTSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

http://search.cpan.org/search?dist=libwww-perl
http://search.cpan.org/search?dist=HTML-Parser

 my %main_site = (
 base_url => ’ http://example.com ’,
 same_hosts => ’www.example.com’,
 email => ’admin@example.com’,
);

 my %news_site = (
 base_url => ’ http://news.example.com ’,
 email => ’admin@example.com’,
);

 @servers = (\%main_site, \%news_site);
 1;

The above defines two Perl hashes (%main_site and %news_site) and then places a *reference* (the back-
slash before the name of the hash) to each of those hashes in the @servers array. The "1;" at the end is
required at the end of the file (Perl must see a true value at the end of the file).

The config file path is the first parameter passed to the spider script.

 ./spider.pl F<config>

If you do not specify a config file then the spider will look for the file SwishSpiderConfig.pl in the current
directory.

The Swish-e distribution includes a SwishSpiderConfig.pl file with a few example configurations. This
example file is installed in the prog-bin/ documentation directory (on unix often this is
/usr/local/share/swish-e/prog-bin).

When the special config file name "default" is used:

 SwishProgParameters default http://www.mysite/index.html [<URL>] [...]

Then a default set of parameters are used with the spider. This is a good way to start using the spider
before attempting to create a configuration file.

The default settings skip any urls that look like images (well, .gif .jpeg .png), and attempts to filter PDF
and MS Word documents IF you have the required filter programs installed (which are not part of the
Swish-e distribution). The spider will follow "a" and "frame" type of links only.

Note that if you do use a spider configuration file that the default configuration will NOT be used (unless
you set the "use_default_config" option in your config file).

 1 Dec 2005240

14.4 CONFIGURATION FILE

http://example.com/
http://news.example.com/
http://www.mysite/index.html

14.5 CONFIGURATION OPTIONS
This describes the required and optional keys in the server configuration hash, in random order...

base_url

This required setting is the starting URL for spidering.

This sets the first URL the spider will fetch. It does NOT limit spidering to URLs at or below the
level of the directory specified in this setting. For that feature you need to use the test_url callback
function.

Typically, you will just list one URL for the base_url. You may specify more than one URL as a
reference to a list and each will be spidered:

 base_url => [qw! http://swish-e.org/ http://othersite.org/other/index.html !],

but each site will use the same config opions. If you want to index two separate sites you will likely
rather add an additional configuration to the @servers array.

You may specify a username and password:

 base_url => ’ http://user:pass@swish-e.org/index.html ’,

If a URL is protected by Basic Authentication you will be prompted for a username and password.
The parameter max_wait_time controls how long to wait for user entry before skipping the current
URL. See also credentials below.

same_hosts

This optional key sets equivalent authority name(s) for the site you are spidering. For example, if
your site is www.mysite.edu but also can be reached by mysite.edu (with or without www)
and also web.mysite.edu then:

Example:

 $serverA{base_url} = ’ http://www.mysite.edu/index.html ’;
 $serverA{same_hosts} = [’mysite.edu’, ’web.mysite.edu’];

Now, if a link is found while spidering of:

 http://web.mysite.edu/path/to/file.html

241 1 Dec 2005

14.5 CONFIGURATION OPTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

http://swish-e.org/
http://othersite.org/other/index.html
http://user:pass@swish-e.org/index.html
http://www.mysite.edu/index.html
http://web.mysite.edu/path/to/file.html

it will be considered on the same site, and will actually spidered and indexed as:

 http://www.mysite.edu/path/to/file.html

Note: This should probably be called same_host_port because it compares the URI host:port
against the list of host names in same_hosts. So, if you specify a port name in you will want to
specify the port name in the the list of hosts in same_hosts:

 my %serverA = (
 base_url => ’ http://sunsite.berkeley.edu:4444/ ’,
 same_hosts => [qw/www.sunsite.berkeley.edu:4444/],
 email => ’my@email.address’,
);

email

This required key sets the email address for the spider. Set this to your email address.

agent

This optional key sets the name of the spider.

link_tags

This optional tag is a reference to an array of tags. Only links found in these tags will be extracted.
The default is to only extract links from >a< tags.

For example, to extract tags from a tags and from frame tags:

 my %serverA = (
 base_url => ’ http://sunsite.berkeley.edu:4444/ ’,
 same_hosts => [qw/www.sunsite.berkeley.edu:4444/],
 email => ’my@email.address’,
 link_tags => [qw/ a frame /],
);

use_default_config

This option is new for Swish-e 2.4.3.

The spider has a hard-coded default configuration that’s available when the spider is run with the
configuration file listed as "default":

 ./spider.pl default <url>

 1 Dec 2005242

14.5 CONFIGURATION OPTIONS

http://www.mysite.edu/path/to/file.html
http://sunsite.berkeley.edu:4444/
http://sunsite.berkeley.edu:4444/

This default configuration skips urls that match the regular expression:

 /\.(?:gif|jpeg|png)$/i

and the spider will attempt to use the SWISH::Filter module for filtering non-text documents. (You
still need to install programs to do the actual filtering, though).

Here’s the basic config for the "default" mode:

 @servers = (
 {
 email => ’swish@user.failed.to.set.email.invalid’,
 link_tags => [qw/ a frame /],
 keep_alive => 1,
 test_url => sub { $_[0]->path !~ /\.(?:gif|jpeg|png)$/i },
 test_response => $response_sub,
 use_head_requests => 1, # Due to the response sub
 filter_content => $filter_sub,
 });

The filter_content callback will be used if SWISH::Filter was loaded and ready to use. This doesn’t
mean that filtering will work automatically -- you will likely need to install aditional programs for
filtering (like Xpdf or Catdoc).

The test_response callback will be set to test if a given content type can be filtered by SWISH::Filter
(if SWISH::Filter was loaded), otherwise, it will check for content-type of text/* -- any text type of
document.

Normally, if you specify your own config file:

 ./spider.pl my_own_spider.config

then you must setup those features available in the default setting in your own config file. But, if you
wish to build upon the "default" config file then set this option.

For example, to use the default config but specify your own email address:

 @servers = (
 {
 email => my@email.address,
 use_default_config => 1,
 delay_sec => 0,
 },
);
 1;

243 1 Dec 2005

14.5 CONFIGURATION OPTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

What this does is "merge" your config file with the default config file.

delay_sec

This optional key sets the delay in seconds to wait between requests. See the LWP::RobotUA man
page for more information. The default is 5 seconds. Set to zero for no delay.

When using the keep_alive feature (recommended) the delay will be used only where the previous
request returned a "Connection: closed" header.

delay_min (deprecated)

Set the delay to wait between requests in minutes. If both delay_sec and delay_min are defined,
delay_sec will be used.

max_wait_time

This setting is the number of seconds to wait for data to be returned from the request. Data is returned
in chunks to the spider, and the timer is reset each time a new chunk is reported. Therefore, docu-
ments (requests) that take longer than this setting should not be aborted as long as some data is
received every max_wait_time seconds. The default it 30 seconds.

NOTE: This option has no effect on Windows.

max_time

This optional key will set the max minutes to spider. Spidering for this host will stop after max_time
minutes, and move on to the next server, if any. The default is to not limit by time.

max_files

This optional key sets the max number of files to spider before aborting. The default is to not limit by
number of files. This is the number of requests made to the remote server, not the total number of
files to index (see max_indexed). This count is displayted at the end of indexing as Unique URLs.

This feature can (and perhaps should) be use when spidering a web site where dynamic content may
generate unique URLs to prevent run-away spidering.

max_indexed

This optional key sets the max number of files that will be indexed. The default is to not limit. This is
the number of files sent to swish for indexing (and is reported by Total Docs when spidering
ends).

max_size

This optional key sets the max size of a file read from the web server. This defaults to 5,000,000
bytes. If the size is exceeded the resource is skipped and a message is written to STDERR if the
DEBUG_SKIPPED debug flag is set.

 1 Dec 2005244

14.5 CONFIGURATION OPTIONS

Set max_size to zero for unlimited size. If the server returns a Content-Length header then that will
be used. Otherwise, the document will be checked for size limi tation as it arrives. That’s a good
reason to have your server send Content-Length headers.

See also use_head_requests below.

keep_alive

This optional parameter will enable keep alive requests. This can dramatically speed up spidering and
reduce the load on server being spidered. The default is to not use keep alives, although enabling it
will probably be the right thing to do.

To get the most out of keep alives, you may want to set up your web server to allow a lot of requests
per single connection (i.e MaxKeepAliveRequests on Apache). Apache’s default is 100, which
should be good.

When a connection is not closed the spider does not wait the "delay_sec" time when making the next
request. In other words, there is no delay in requesting documents while the connection is open.

Note: try to filter as many documents as possible before making the request to the server. In other
words, use test_url to look for files ending in .html instead of using test_response to look for a
content type of text/html if possible. Do note that aborting a request from test_response will
break the current keep alive connection.

Note: you must have at least libwww-perl-5.53_90 installed to use this feature.

use_head_requests

This option is new as of swish-e 2.4.3 and can effect the speed of spidering and the load of the web
server.

To understand this you will likely need to read about the CALLBACK FUNCTIONS below -- specif-
ically about the test_response callback function. This option is also only used when keep_alive is also
enabled (although it could be debated that it’s useful without keep alives).

This option tells the spider to use http HEAD requests before each request.

Normally, the spider simply does a GET request and after receiving the first chunk of data back from
the web server calls the test_response callback function (if one is defined in your config file). The
test_response callback function is a good place to test the content-type header returned from the
server and reject types that you do not want to index.

Now, *if* you are using the keep_alive feature then rejecting a document will often (always?) break
the keep alive connection.

So, what the use_head_requests option does is issue a HEAD request for every document, checks for
a Content-Length header (to check if the document is larger than max_size, and then calls your
test_response callback function. If your callback function returns true then a GET request is used to
fetch the document.

245 1 Dec 2005

14.5 CONFIGURATION OPTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

The idea is that by using HEAD requests instead of GET request a false return from your
test_response callback function (i.e. rejecting the document) will not break the keep alive connection.

Now, don’t get too excited about this. Before using this think about the ratio of rejected documents to
accepted documents. If you reject no documents then using this feature will double the number of
requests to the web server -- which will also double the number of connections to the web server.
But, if you reject a large percentage of documents then this feature will help maximize the number of
keep alive requests to the server (i.e. reduce the number of separate connections needed).

There’s also another problem with using HEAD requests. Some broken servers may not respond
correctly to HEAD requests (some issues a 500 error), but respond fine to a normal GET request.
This is something to watch out for.

Finally, if you do not have a test_response callback AND max_size is set to zero then setting
use_head_requests will have no effect.

And, with all other factors involved you might find this option has no effect at all.

skip

This optional key can be used to skip the current server. It’s only purpose is to make it easy to disable
a specific server hash in a configuration file.

debug

Set this item to a comma-separated list of debugging options.

Options are currently:

 errors, failed, headers, info, links, redirect, skipped, url

Here are basically the levels:

 errors => general program errors (not used at this time)
 url => print out every URL processes
 headers => prints the response headers
 failed => failed to return a 200
 skipped => didn’t index for some reason
 info => a little more verbose
 links => prints links as they are extracted
 redirect => prints out redirected URLs

Debugging can be also be set by an environment variable SPIDER_DEBUG when running spider.pl.
You can specify any of the above debugging options, separated by a comma.

For example with Bourne type shell:

 1 Dec 2005246

14.5 CONFIGURATION OPTIONS

 SPIDER_DEBUG=url,links spider.pl [....]

Before Swish-e 2.4.3 you had to use the internal debugging constants or’ed together like so:

 debug => DEBUG_URL | DEBUG_FAILED | DEBUG_SKIPPED,

You can still do this, but the string version is easier. In fact, if you want to turn on debugging dynam-
ically (for example in a test_url() callback function) then you currently *must* use the
DEBUG_* constants. The string is converted to a number only at the start of spiderig -- after that the
debug parameter is converted to a number.

quiet

If this is true then normal, non-error messages will be supressed. Quiet mode can also be set by
setting the environment variable SPIDER_QUIET to any true value.

 SPIDER_QUIET=1

max_depth

The max_depth parameter can be used to limit how deeply to recurse a web site. The depth is just a
count of levels of web pages decended, and not related to the number of path elements in a URL.

A max_depth of zero says to only spider the page listed as the base_url. A max_depth of one will
spider the base_url page, plus all links on that page, and no more. The default is to spider all pages.

ignore_robots_file

If this is set to true then the robots.txt file will not be checked when spidering this server. Don’t use
this option unless you know what you are doing.

use_cookies

If this is set then a "cookie jar" will be maintained while spidering. Some (poorly written ;) sites
require cookies to be enabled on clients.

This requires the HTTP::Cookies module.

use_md5

If this setting is true, then a MD5 digest "fingerprint" will be made from the content of every spidered
document. This digest number will be used as a hash key to prevent indexing the same content more
than once. This is helpful if different URLs generate the same content.

Obvious example is these two documents will only be indexed one time:

247 1 Dec 2005

14.5 CONFIGURATION OPTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

 http://localhost/path/to/index.html
 http://localhost/path/to/

This option requires the Digest::MD5 module. Spidering with this option might be a tiny bit slower.

validate_links

Just a hack. If you set this true the spider will do HEAD requests all links (e.g. off-site links), just to
make sure that all your links work.

credentials

You may specify a username and password to be used automatically when spidering:

 credentials => ’username:password’,

A username and password supplied in a URL will override this setting. This username and password
will be used for every request.

See also the get_password callback function below. get_password, if defined, will be called when a
page requires authorization.

credential_timeout

Sets the number of seconds to wait for user input when prompted for a username or password. The
default is 30 seconds.

Set this to zero to wait forever. Probably not a good idea.

Set to undef to disable asking for a password.

 credential_timeout => undef,

remove_leading_dots

Removes leading dots from URLs that might reference documents above the document root. The
default is to not remove the dots.

14.6 CALL BACK FUNCTIONS
Callback functions can be defined in your parameter hash. These optional settings are callback subrou-
tines that are called while processing URLs.

A little perl discussion is in order:

 1 Dec 2005248

14.6 CALLBACK FUNCTIONS

http://localhost/path/to/index.html
http://localhost/path/to/

In perl, a scalar variable can contain a reference to a subroutine. The config example above shows that the
configuration parameters are stored in a perl hash.

 my %serverA = (
 base_url => ’ http://sunsite.berkeley.edu:4444/ ’,
 same_hosts => [qw/www.sunsite.berkeley.edu:4444/],
 email => ’my@email.address’,
 link_tags => [qw/ a frame /],
);

There’s two ways to add a reference to a subroutine to this hash:

sub foo { return 1; }

 my %serverA = (
 base_url => ’ http://sunsite.berkeley.edu:4444/ ’,
 same_hosts => [qw/www.sunsite.berkeley.edu:4444/],
 email => ’my@email.address’,
 link_tags => [qw/ a frame /],
 test_url => \&foo, # a reference to a named subroutine
);

Or the subroutine can be coded right in place:

 my %serverA = (
 base_url => ’ http://sunsite.berkeley.edu:4444/ ’,
 same_hosts => [qw/www.sunsite.berkeley.edu:4444/],
 email => ’my@email.address’,
 link_tags => [qw/ a frame /],
 test_url => sub { reutrn 1; },
);

The above example is not very useful as it just creates a user callback function that always returns a true
value (the number 1). But, it’s just an example.

The function calls are wrapped in an eval, so calling die (or doing something that dies) will just cause that
URL to be skipped. If you really want to stop processing you need to set $server->{abort} in your subrou-
tine (or send a kill -HUP to the spider).

The first two parameters passed are a URI object (to have access to the current URL), and a reference to
the current server hash. The server hash is just a global hash for holding data, and useful for setting
flags as described below.

Other parameters may be also passed in depending the the callback function, as described below. In perl
parameters are passed in an array called "@_". The first element (first parameter) of that array is $_[0],
and the second is $_[1], and so on. Depending on how complicated your function is you may wish to shift
your parameters off of the @_ list to make working with them easier. See the examples below.

249 1 Dec 2005

14.6 CALLBACK FUNCTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

http://sunsite.berkeley.edu:4444/
http://sunsite.berkeley.edu:4444/
http://sunsite.berkeley.edu:4444/

To make use of these routines you need to understand when they are called, and what changes you can
make in your routines. Each routine deals with a given step, and returning false from your routine will
stop processing for the current URL.

test_url

test_url allows you to skip processing of urls based on the url before the request to the server is made.
This function is called for the base_url links (links you define in the spider configuration file) and for
every link extracted from a fetched web page.

This function is a good place to skip links that you are not interested in following. For example, if
you know there’s no point in requesting images then you can exclude them like:

 test_url => sub {
 my $uri = shift;
 return 0 if $uri->path =~ /\.(gif|jpeg|png)$/;
 return 1;
 },

Or to write it another way:

 test_url => sub { $_[0]->path !~ /\.(gif|jpeg|png)$/ },

Another feature would be if you were using a web server where path names are NOT case sensitive
(e.g. Windows). You can normalize all links in this situation using something like

 test_url => sub {
 my $uri = shift;
 return 0 if $uri->path =~ /\.(gif|jpeg|png)$/;

 $uri->path(lc $uri->path); # make all path names lowercase
 return 1;
 },

The important thing about test_url (compared to the other callback functions) is that it is called while
extracting links, not while actually fetching that page from the web server. Returning false from
test_url simple says to not add the URL to the list of links to spider.

You may set a flag in the server hash (second parameter) to tell the spider to abort processing.

 test_url => sub {
 my $server = $_[1];
 $server->{abort}++ if $_[0]->path =~ /foo\.html/;
 return 1;
 },

 1 Dec 2005250

14.6 CALLBACK FUNCTIONS

You cannot use the server flags:

 no_contents
 no_index
 no_spider

This is discussed below.

test_response

This function allows you to filter based on the response from the remote server (such as by
content-type).

Web servers use a Content-Type: header to define the type of data returned from the server. On a
web server you could have a .jpeg file be a web page -- file extensions may not always indicate the
type of the file.

If you enable use_head_requests then this function is called after the spider makes a HEAD request.
Otherwise, this function is called while the web pages is being fetched from the remote server, typi-
cally after just enought data has been returned to read the response from the web server.

The test_response callback function is called with the following parameters:

 ($uri, $server, $response, $content_chunk)

The $response variable is a HTTP::Response object and provies methods of examining the
server’s response. The $content_chunk is the first chunk of data returned from the server (if not
a HEAD request).

When not using use_head_requests the spider requests a document in "chunks" of 4096 bytes. 4096 is
only a suggestion of how many bytes to return in each chunk. The test_response routine is called
when the first chunk is received only. This allows ignoring (aborting) reading of a very large file, for
example, without having to read the entire file. Although not much use, a reference to this chunk is
passed as the forth parameter.

If you are spidering a site with many different types of content that you do not wish to index (and
cannot use a test_url callback to determine what docs to skip) then you will see better performance
using both the use_head_requests and keep_alive features. (Aborting a GET request kills the
keep-alive session.)

For example, to only index true HTML (text/html) pages:

 test_response => sub {
 my $content_type = $_[2]->content_type;
 return $content_type =~ m!text/html!;
 },

251 1 Dec 2005

14.6 CALLBACK FUNCTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

You can also set flags in the server hash (the second parameter) to control indexing:

 no_contents -- index only the title (or file name), and not the contents
 no_index -- do not index this file, but continue to spider if HTML
 no_spider -- index, but do not spider this file for links to follow
 abort -- stop spidering any more files

For example, to avoid index the contents of "private.html", yet still follow any links in that file:

 test_response => sub {
 my $server = $_[1];
 $server->{no_index}++ if $_[0]->path =~ /private\.html$/;
 return 1;
 },

Note: Do not modify the URI object in this call back function.

filter_content

This callback function is called right before sending the content to swish. Like the other callback
function, returning false will cause the URL to be skipped. Setting the abort server flag and return-
ing false will abort spidering.

You can also set the no_contents flag.

This callback function is passed four parameters. The URI object, server hash, the HTTP::Response
object, and a reference to the content.

You can modify the content as needed. For example you might not like upper case:

 filter_content => sub {
 my $content_ref = $_[3];

 $$content_ref = lc $$content_ref;
 return 1;
 },

I more reasonable example would be converting PDF or MS Word documents for parsing by swish.
Examples of this are provided in the prog-bin directory of the swish-e distribution.

You may also modify the URI object to change the path name passed to swish for indexing.

 filter_content => sub {
 my $uri = $_[0];
 $uri->host(’www.other.host’) ;
 return 1;
 },

 1 Dec 2005252

14.6 CALLBACK FUNCTIONS

Swish-e’s ReplaceRules feature can also be used for modifying the path name indexed.

Note: Swish-e now includes a method of filtering based on the SWISH::Filter Perl modules. See the
SwishSpiderConfig.pl file for an example how to use SWISH::Filter in a filter_content callback func-
tion.

If you use the "default" configuration (i.e. pass "default" as the first parameter to the spider) then
SWISH::Filter is used automatically. This only adds code for calling the programs to filter your
content -- you still need to install applications that do the hard work (like xpdf for pdf conversion and
catdoc for MS Word conversion).

The a function included in the spider.pl for calling SWISH::Filter when using the "default" config
can also be used in your config file. There’s a function called swish_filter() that returns a list
of two subroutines. So in your config you could do:

 my ($filter_sub, $response_sub) = swish_filter();

 @server = ({
 test_response => $response_sub,
 filter_content => $filter_sub,
 [...],
 });

The $response_sub is not required, but is useful if using HEAD requests (use_head_requests): It
tests the content type from the server to see if there’s any filters that can handle the document. The
$filter_sub does all the work of filtering a document.

Make sense? If not, then that’s what the Swish-e list is for.

spider_done

This callback is called after processing a server (after each server listed in the @servers array if
more than one).

This allows your config file to do any cleanup work after processing. For example, if you were
keeping counts during, say, a test_response() callback function you could use the
spider_done() callback to print the results.

output_function

If defined, this callback function is called instead of printing the content and header to STDOUT.
This can be used if you want to store the output of the spider before indexing.

The output_function is called with the following parameters:

 ($server, $content, $uri, $response, $bytecount, $path);

253 1 Dec 2005

14.6 CALLBACK FUNCTIONSSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

Here is an example that simply shows two of the params passed:

 output_function => sub {
 my ($server, $content, $uri, $response, $bytecount, $path) = @_;
 print STDERR "passed: uri $uri, bytecount $bytecount...\n";
 # no output to STDOUT for swish-e
 }

You can do almost the same thing with a filter_content callback.

get_password

This callback is called when a HTTP password is needed (i.e. after the server returns a 401 error).
The function can test the URI and Realm and then return a username and password separated by a
colon:

 get_password => sub {
 my ($uri, $server, $response, $realm) = @_;
 if ($uri->path =~ m!^/path/to/protected! && $realm eq ’private’) {
 return ’joe:secret931password’;
 }
 return; # sorry, I don’t know the password.
 },

Use the credentials setting if you know the username and password and they will be the same for
every request. That is, for a site-wide password.

Note that you can create your own counters to display in the summary list when spidering is finished by
adding a value to the hash pointed to by $server- {counts}>.

 test_url => sub {
 my $server = $_[1];
 $server->{no_index}++ if $_[0]->path =~ /private\.html$/;
 $server->{counts}{’Private Files’}++;
 return 1;
 },

Each callback function must return true to continue processing the URL. Returning false will cause
processing of the current URL to be skipped.

14.6.1 More on setting flags

Swish (not this spider) has a configuration directive NoContents that will instruct swish to index only the
title (or file name), and not the contents. This is often used when indexing binary files such as image files,
but can also be used with html files to index only the document titles.

 1 Dec 2005254

14.6.1 More on setting flags

As shown above, you can turn this feature on for specific documents by setting a flag in the server hash
passed into the test_response or filter_content subroutines. For example, in your configuration file you
might have the test_response callback set as:

 test_response => sub {
 my ($uri, $server, $response) = @_;
 # tell swish not to index the contents if this is of type image
 $server->{no_contents} = $response->content_type =~ m[^image/];
 return 1; # ok to index and spider this document
 }

The entire contents of the resource is still read from the web server, and passed on to swish, but swish will
also be passed a No-Contents header which tells swish to enable the NoContents feature for this document
only.

Note: Swish will index the path name only when NoContents is set, unless the document’s type (as set by
the swish configuration settings IndexContents or DefaultContents) is HTML and a title is found in the
html document.

Note: In most cases you probably would not want to send a large binary file to swish, just to be ignored.
Therefore, it would be smart to use a filter_content callback routine to replace the contents with single
character (you cannot use the empty string at this time).

A similar flag may be set to prevent indexing a document at all, but still allow spidering. In general, if you
want completely skip spidering a file you return false from one of the callback routines (test_url,
test_response, or filter_content). Returning false from any of those three callbacks will stop processing of
that file, and the file will not be spidered.

But there may be some cases where you still want to spider (extract links) yet, not index the file. An
example might be where you wish to index only PDF files, but you still need to spider all HTML files to
find the links to the PDF files.

 $server{test_response} = sub {
 my ($uri, $server, $response) = @_;
 $server->{no_index} = $response->content_type ne ’application/pdf’;
 return 1; # ok to spider, but don’t index
 }

So, the difference between no_contents and no_index is that no_contents will still index the
file name, just not the contents. no_index will still spider the file (if it’s text/html) but the file will
not be processed by swish at all.

Note: If no_index is set in a test_response callback function then the document will not be filtered. That
is, your filter_content callback function will not be called.

The no_spider flag can be set to avoid spiderering an HTML file. The file will still be indexed unless
no_index is also set. But if you do not want to index and spider, then simply return false from one of
the three callback funtions.

255 1 Dec 2005

14.6.1 More on setting flagsSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

14.7 SIGNALS
Sending a SIGHUP to the running spider will cause it to stop spidering. This is a good way to abort
spidering, but let swish index the documents retrieved so far.

14.8 CHANGES
List of some of the changes

14.8.1 Thu Sep 30 2004 - changes for Swish-e 2.4.3

Code reorganization and a few new featues. Updated docs a little tiny bit. Introduced a few spelling
mistakes.

Config opiton: use_default_config

It used to be that you could run the spider like:

 spider.pl default <some url>

and the spider would use its own internal config. But if you used your own config file then the
defaults were not used. This options allows you to merge your config with the default config. Makes
making small changes to the default easy.

Config option: use_head_requests

Tells the spider to make a HEAD request before GET’ing the document from the web server. Useful
if you use keep_alive and have a test_response() callback that rejects many documents (which
breaks the connection).

Config option: spider_done

Callback to tell you (or tell your config as it may be) that the spider is done. Useful if you need to do
some extra processing when done spidering -- like record counts to a file.

Config option: get_password

This callback is called when a document returns a 401 error needing a username and password.
Useful if spidering a site proteced with multiple passwords.

Config option: output_function

If defined spider.pl calls this instead of sending ouptut to STDOUT.

 1 Dec 2005256

14.7 SIGNALS

Config option: debug

Now you can use the words instead of or’ing the DEBUG_* constants together.

14.9 TODO
Add a "get_document" callback that is called right before making the "GET" request. This would make it
easier to use cached documents. You can do that now in a test_url callback or in a test_response when
using HEAD request.

Save state of the spider on SIGHUP so spidering could be restored at a later date.

14.10 COPYRIGHT
Copyright 2001 Bill Moseley

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

14.11 SUPPORT
Send all questions to the The SWISH-E discussion list.

See http://sunsite.berkeley.edu/SWISH-E.

257 1 Dec 2005

14.9 TODOSWISH-Enhanced: spider.pl - Example Perl program to spider web servers

http://sunsite.berkeley.edu/SWISH-E.

15 SWISH::Filter - Perl extension for filter ing docu-
ments with Swish-e

 1 Dec 2005258

15 SWISH::Filter - Perl extension for filtering documents with Swish-e

15.1 SYNOPSIS

 use SWISH::Filter;

 # load available filters into memory
 my $filter = SWISH::Filter->new;

 # convert a document

 my $doc = $filter->convert(
 document => \$scalar_ref, # path or ref to a doc
 content_type => $content_type, # content type if doc reference
 name => $real_path, # optional name for this file (useful for debugging)
 user_data => $whatever, # optional data to make available to filters
);

 return unless $doc; # empty doc, zero size, or no filters installed

 # Was the document converted by a filter?
 my $was_filtered = $doc->was_filtered;

 # Skip if the file is not text
 return if $doc->is_binary;

 # Print out the doc
 my $doc_ref = $doc->fetch_doc;
 print $$doc_ref;

 # Fetch the final content type of the document
 my $content_type = $doc->content_type;

 # Fetch Swish-e parser type (TXT*, XML*, HTML*, or undefined)
 my $doc_type = $doc->swish_parser_type;

15.2 DESCRIPTION
SWISH::Filter provides a unified way to convert documents into a type that Swish-e can index. Individual
filters are installed as separate perl modules. For example, there might be a filter that converts from PDF
format to HTML format.

259 1 Dec 2005

15.1 SYNOPSISSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

Note that this is just a framework for filtering documents. Additional helper programs or Perl module may
need to be installed to use SWISH::Filter to filter documents. For example, to filter PDF documents you
must install the Xpdf package.

The filters are automatically loaded when SWISH::Filters->new() is called. Filters define a type
and priority that determines the processing order of the filter. Filters are processed in this sort order until a
filter accepts the document for filtering. The filter uses the document’s content type to determine if the
filter should handle the current document. The content-type is determined by the files suffix if not
supplied by the calling program.

The individual filters are not designed to be used as separate modules. All access to the filters is through
this SWISH::Filter module.

Normally, once a document is filtered processing stops. Filters can filter the document and then set a flag
saying that filtering should continue (for example a filter that uncompresses a MS Word document before
passing on to the filter that converts from MS Word to text). All this should be transparent to the end user.
So, filters can be pipe-lined.

The idea of SWISH::Filter is that new filters can be created, and then downloaded and installed to provide
new filtering capabilities. For example, if you needed to index MS Excel documents you might be able to
download a filter from the Swish-e site and magically next time you run indexing MS Excel docs would
be indexed.

The SWISH::Filter setup can be used with -S prog or -S http. It works best with the -S prog method
because the filter modules only need to be loaded and compiled one time. The -S prog program spider.pl
will automatically use SWISH::Filter when spidering with default settings (using "default" as the first
parameter to spider.pl).

The -S http indexing method uses a Perl helper script called swishspider. swishspider has been updated to
work with SWISH::Filter, but (unlike spider.pl) does not contain a "use lib" line to point to the location of
SWISH::Filter. This means that by default swishspider will not use SWISH::Filter for filtering. The
reason for this is because swishspider runs for every URL fetched, and loading the Filters for each docu-
ment can be slow. The recommended way of spidering is using -S prog with spider.pl, but if -S http is
desired the way to enable SWISH::Filter is to set PERL5LIB before running swish so that swishspider will
be able to locate the SWISH::Filter module. Here’s one way to set the PERL5LIB with the bash shell:

 $ export PERL5LIB=‘swish-filter-test -path‘

15.3 METHODS
$filter = SWISH::Filter->new()

This creates a SWISH::Filter object. You may pass in options as a list or a hash reference.

 1 Dec 2005260

15.3 METHODS

15.3.1 SWISH::Filter->new Options

There is currently only one option that can be passed in to new():

ignore_filters

Pass in a reference to a list of filter names to ignore. For example, if you have two filters installed
"Pdf2HTML" and "Pdf2XML" and want to avoid using "Pdf2XML":

 my $filter = SWISH::Filter->new(ignore_filters => [’Pdf2XML’];

$doc_object = $filter->convert();

This method filters a document. Returns an object of the class SWISH::Filter::document or undefined
if passed in an empty document, a filename that cannot be read off disk, or if no filters have been
loaded.

SWISH::Filter::document methods listed below can be called on the object to, for example, check if
the document was filtered and to fetch the document content (filtered or not).

You must pass in a hash (or hash reference) of parameters to the convert() method. The possible
parameters are:

document

This can be either a path to a file, or a scalar reference to a document in memory. This is
required.

content_type

The MIME type of the document. This is only required when passing in a scalar reference to a
document. The content type string is what the filters use to match a document type.

When passing in a file name and content_type is not set, then the content type will be deter-
mined from the file’s extension by using the MIME::Types Perl module (available on CPAN).

name

Optional name to pass in to filters that will be used in error and warning messages.

user_data

Optional data structure that all filters may access. This can be fetched in a filter by:

 my $user_data = $doc_object->user_data;

261 1 Dec 2005

15.3.1 SWISH::Filter->new OptionsSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

And used in the filter as:

 if (ref $user_data && $user_data->{pdf2html}{title}) {
 ...
 }

It’s up to the filter author to use a unique first-level hash key for a given filter.

Example of using the convert() method:

 $doc_object = $filter->convert(
 document => $doc_ref,
 content-type => ’application/pdf’,
);

$filter->mywarn()

Internal function used for writing warning messages to STDERR if $ENV{FILTER_DEBUG} is set.
Set the environment variable FILTER_DEBUG before running to see extra messages while process-
ing.

@filters = $filter->filter_list;

Returns a list of filter objects installed.

@filter = $filter->can_filter($content_type);

This is useful for testing to see if a mimetype might be handled by SWISH::Filter wihtout having to
pass in a document. Helpful if doing HEAD requests.

Returns an array of filters that can handle this type of document

15.4 WRITING FILTERS
Filters are standard perl modules that are installed into the SWISH::Filters name space. Filters are not
complicated -- see the existing filters for examples.

Each filter defines the content-types (or mimetypes) that it can handle. These are specified as a list of
regular expressions to match against the document’s content-type. If one of the mimetypes of a filter
match the incoming document’s content-type the filter is called. The filter can then either filter the
content or return undefined indicating that it decided not to filter the document for some reason. If
the document is converted the filter returns either a reference to a scalar of the content or a file name
where the content is stored. The filter also must change the content-type of the document to reflect
the new document.

 1 Dec 2005262

15.4 WRITING FILTERS

Filters typically use external programs or modules to do that actual work of converting a document
from one type to another. For example, programs in the Xpdf packages are used for converting PDF
files. The filter can (and should) test for those programs in its new() method.

Filters also can define a type and priority. These attributes are used to set the order filters are tested
for a content-type match. This allows you to have more than one filter that can work on the same
content-type.

If a filter calls die() then the filter is removed from the chain and will not be called again during
the same run. Calling die when running with -S http or -S fs has no effect since the program is run
once per document.

Once a filter returns something other than undef no more filters will be called. If the filter calls
$filter->set_continue then processing will continue as if the file was not filtered. For example, a filter
can uncompress data and then set $filter->set_continue and let other filters process the document.

This is the list of methods the filter should or may define (as specificed):

new() * required *

This method returns either an object which provides access to the filter, or undefined if the filter
is not to be used.

The new() method is a good place to check for required modules or helper programs. Return-
ing undefined prevents the filter from being included in the filter chain.

The new method must return a blessed hash reference. The only required attribute is mime-
types. This attribute must contain a reference to an array of regular expressions used for match-
ing the content-type of the document passed in.

Example:

 sub new {
 my ($class) = @_;

 # List of regular expressions
 my @mimetypes = (
 qr[application/(x-)?msword],
 qr[application/worddoc],
);

 my %settings = (
 mimetypes => \@mimetypes,

 # Optional settings
 priority => 20,
 type => 2,
);

263 1 Dec 2005

15.4 WRITING FILTERSSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

 return bless \%settings, $class;
 }

The attribute "mimetypes" returns an array reference to a list of regular expressions. Those
patterns are matched against each document’s content type.

filter() * required *

This is the function that does the work of converting a document from one content type to
another. The function is passed the document object. See document object methods listed below
for what methods may be called on a document.

The function can return undefined (or any false value) to indicate that the filter did not want to
process the document. Other filters will then be tested for a content type match.

If the document is filtered then the filter must set the new document’s content type (if it
changed) and return either a file name where the document can be found or a reference to a
scalar containing the document.

type()

Returns a number. Filters are sorted (for processing in a specific order) and this number is
simply the primary key used in sorting. If not specified the filter’s type used for sorting is 2.

This is an optional method. You can also set the type in your new() constructor as shown
above.

prior ity ()

Returns a number. Filters are sorted (for processing in a specific order) and this number is
simply the secondary key used in sorting. If not specified the filter’s priority is 50.

This is an optional method. You can also set the priority in your new() constructor as shown
above.

Again, the point of the type() and prior ity () methods is to allow setting the sort order of the
filters. Useful if you have two filters for filtering the same content-type, but prefer to use one over the
other. Neither are required.

Here’s a module to convert MS Word documents using the program "catdoc":

 package SWISH::Filters::Doc2txt;
 use vars qw/ $VERSION /;

 $VERSION = ’0.02’;

 1 Dec 2005264

15.4 WRITING FILTERS

 sub new {
 my ($class) = @_;

 my $self = bless {
 mimetypes => [qr!application/(x-)?msword!],
 priority => 50,
 }, $class;

 # check for helpers
 return $self->set_programs(’catdoc’);

 }

 sub filter {
 my ($self, $doc) = @_;

 my $content = $self->run_catdoc($doc->fetch_filename) || return;

 # update the document’s content type
 $filter->set_content_type(’text/plain’);

 # return the document
 return \$content;
 }
 1;

The new() constructor creates a blessed hash which contains an array reference of mimetypes
patterns that this filter accepts. The priority sets this filter to run after any other filters that might
handle the same type of content. The set_programs() function says that we need to call a program
called "catdoc". The function either returns $self or undefined if catdoc could not be found. The
set_programs() function creates a new method for running catdoc.

The filter function runs catdoc passing in the name of the file (if the file is in memory a temporary
file is created). That run_catdoc() function was created by the set_programs() call above.

15.5 SWISH::Filter::docu ment Methods
These methods are available to Filter authors, and also provide access to the document after calling
the convert() method to end-users of SWISH::Filter.

End users of SWISH::Filter will use a subset of these methods. Mostly:

265 1 Dec 2005

15.5 SWISH::Filter::document MethodsSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

 $doc_object->fetch_doc # and alias for fetch_document_reference()
 $doc_object->was_filtered # true the document was filtered
 $doc_object->content_type # document’s current content type (mime type)
 $doc_object->swish_parser_type # returns a parser type to use with Swish-e -S prog method
 $doc_object->is_binary # returns $content_type !~ m[^text/];

These methods are also available to the individual filter modules. The filter’s "filter" function is also
passed a SWISH::Filter::document object. Method calls may be made on this object to check the
document’s current content type, or to fetch the document as either a file name or a reference to a
scalar containing the document content.

15.5.1 Methods used by end-users and filter authors

$doc_ref = $doc_object->fetch_doc_reference;

Returns a scalar reference to the document. This can be used when the filter can operate on the
document in memory (or if an external program expects the input to be from standard input).

If the file is currently on disk then it will be read into memory. If the file was stored in a tempo-
rary file on disk the file will be deleted once read into memory. The file will be read in binmode
if $doc->is_binary is true.

Note that $doc_object->fetch_doc is an alias.

$was_filtered = $doc_object->was_filtered

Returns true if some filter processed the document

$content_type = $doc_object->content_type;

Fetches the current content type for the document.

Example:

 return unless $filter->content_type =~ m!application/pdf!;

$type = $doc_object->swish_parser_type

Returns a parser type based on the content type

$doc_object->is_binary

Returns true if the document’s content-type does not match "text/".

 1 Dec 2005266

15.5.1 Methods used by end-users and filter authors

15.5.2 Methods used by filter authors

$file_name = $doc_object->fetch_filename;

Returns a path to the document as stored on disk. This name can be passed to external programs
(e.g. catdoc) that expect input as a file name.

If the document is currently in memory then a temporary file will be created. Do not expect the
file name passed to be the real path of the document.

The file will be written in binmode if $doc->is_binary is true.

This method is not normally used by end-users of SWISH::Filter.

$doc_object->set_continue;

Processing will continue to the next filter if this is set to a true value. This should be set for
filters that change encodings or uncompress documents.

$doc_object->set_content_type($type);

Sets the content type for a document.

$doc_object->name

Fetches the name of the current file. This is useful for printing out the name of the file in an
error message. This is the name passed in to the SWISH::Filter->convert method. It is optional
and thus may not always be set.

 my $name = $doc_object->name || ’Unknown name’;
 warn "File ’$name’: failed to convert -- file may be corrupt\n";

$doc_object->user_data

Fetches the the user_data passed in to the filter. This can be any data or data structure passed
into SWISH::Filter->new.

This is an easy way to pass special parameters into your filters.

Example:

 my $data = $doc_object->user_data;
 # see if a choice for the <title> was passed in
 if (ref $data eq ’HASH’ && $data->{pdf2html}{title_field} {
 ...
 ...
 }

267 1 Dec 2005

15.5.2 Methods used by filter authorsSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

15.6 SWISH::Filters::_BASE
Each filter is a subclass of SWISH::Filters::_BASE. A number of methods are available by
default (and some can be overridden). Others are useful when writing your new() constructor.

$self->type

This method fetches the type of the filter. The value returned sets the primary sort key for
sorting the filters. You can override this in your filter, or just set it as an attribute in your
object. The default is 2.

The idea of the "type" is to create groups of filters, if needed. For example, you might have
a set of filters that are used for uncompressing some documents before passing on to
another group for filtering.

$self->priority

This method fetches the priority of the filter. The value returned sets the secondary sort key
for sorting the filters. You can override this in your filter, or just set it as an attribute in
your object. The default method returns 50.

The priority is useful if you have multiple filters for the same content type that use different
methods for filtering (say one uses wvWare and another uses catdoc for filtering MS Word
files). You might give the wvWare filter a lower priority number so it runs before the
catdoc filter if both wvWare AND catdoc happen to be installed at the same time.

@types = $self->mimetypes

Returns the list of mimetypes (as regular expressions) set for the filter.

$pattern = $self->can_filter_mimetype($content_type)

Returns true if passed in content type matches one of the filter’s mimetypes Returns the
pattern that matched.

mywarn($message)

method for printing out message if debugging is available

$boolean = $self->set_programs(@program_list);

Returns true if all the programs listed in @program_list are found and can be executed
as the current user. Creates a method for each program with the "run_" prefix. Returns false
is ANY program cannot be found.

Actually, it returns $self, so you can make it the last statement in your constructor.

 1 Dec 2005268

15.6 SWISH::Filters::_BASE

So in your constructor you might do:

 return $self->set_programs(qw/ pdftotext pdfinfo /);

Then in your filter() method:

 my $content = $self->run_pdfinfo($doc->fetch_filename, [options]);

$path = $self->find_binary($prog);

Use in a filter’s new() method to test for a necesary program located in $PATH. Returns
the path to the program or undefined if not found or does not pass the -x file test.

$bool = $self->use_modules(@module_list);

Attempts to load each of the module listed and calls its import() method.

Use to test and load required modules within a filter without aborting.

 return unless $self->use_modules(qw/ Spreadsheet::ParseExcel HTML::Entities /);

A warning message is displayed if the FILTER_DEBUG environment variable is true.
Returns $self if no error.

$doc_ref = $self->run_program($program, @args);

Runs $program with @args. Must pass in @args.

Under Windows calls IPC::Open2, which may pass data through the shell. Double-quotes are
escaped (backslashed) and each parameter is wrapped in double-quotes.

On other platforms a fork and exec is used to avoid passing any data through the shell. Returns a
reference to a scalar containing the output from your program, or dies.

This method is intended to read output from a program that converts one format into text. The
output is read back in text mode -- on systems like Windows this means \r\n (CRLF) will be
convertet to \n.

15.7 TESTING
Filters can be tested with the swish-filter-test program. Run:

 swish-filter-test -man

269 1 Dec 2005

15.7 TESTINGSWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

for documentation.

15.8 SUPPORT
Please contact the Swish-e discussion list. http://swish-e.org

15.9 Bugs, todo items, and other notes
TBD

15.10 AUTHOR
Bill Moseley

15.11 COPYRIGHT
This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

 1 Dec 2005270

15.8 SUPPORT

http://swish-e.org/

Table of Contents:
.................. 1SWISH-Enhanced
........... 2SWISH-Enhanced: The Swish-e README File
............... 21 The Swish-e README File
.................. 31.1 Upgrading?
................ 31.2 What is Swish-e?
................ 41.2.1 Key features
............... 51.3 Where do I get Swish-e?
.............. 51.4 How Do I Install Swish-e?
.............. 51.5 The Swish-e Documentation
............ 61.6 Where do I get help with Swish-e?
................ 61.7 Speling mistakes
............... 61.8 Swish-e Development
................ 61.9 Swish-e’s History
................. 61.10 Document Info
....... 8SWISH-Enhanced: INSTALL - Swish-e Installation Instructions
........... 82 INSTALL - Swish-e Installation Instructions
................. 92.1 OVERVIEW
......... 92.1.1 Upgrading from previous versions of Swish-e
................ 92.1.2 Windows Users
.............. 102.2 SYSTEM REQUIREMENTS
.............. 102.2.1 Software Requirements
........... 102.2.2 Optional but Recommended Packages
................ 122.3 INSTALLATION
............... 122.3.1 Building Swish-e
............. 132.3.2 Installing without root access
................ 152.3.3 Run-time paths
............. 152.3.4 Building a Debian Package
................ 152.3.5 What’s installed
................ 162.3.6 Documentation
......... 162.3.7 The Swish-e documentation as man(1) pages
............ 162.3.8 Join the Swish-e discussion list
.......... 172.4 QUESTIONS AND TROUBLESHOOTING
....... 172.4.1 When posting, please provide the following information:
.......... 182.5 ADDITIONAL INSTALLATION OPTIONS
............ 182.5.1 The SWISH::API Perl Module
......... 192.5.2 Creating PDF and Postscript documentation
.......... 192.6 GENERAL CONFIGURATION AND USAGE
........... 192.6.1 Introduction to Indexing and Searching
............. 222.6.2 Metanames and Properties
............. 232.6.3 Getting Started With Swish-e
........... 232.6.4 Step 1: Create a Configuration File
.............. 242.6.5 Step 2: Index your Files
................ 252.6.6 Step 3: Search
............... 252.6.7 Phrase Searching

i 1 Dec 2005

............... 262.6.8 Boolean Searching

............... 262.6.9 Context Searching

................ 272.6.10 META Tags

......... 282.6.11 Spidering and Searching with a Web form.

.......... 322.7 Indexing Other Types of Documents - Filtering

............... 332.7.1 Filtering Overview

............... 332.7.2 Filtering Examples

................. 342.8 Document Info

........... 35SWISH-Enhanced: CHANGES - List of revisions

.............. 353 CHANGES - List of revisions

................ 363.1 Revision History

............ 363.1.1 Version 2.4.3 December 9, 2004

........ 363.1.2 Version 2.4.3-pr1 - Wed Dec 1 09:52:50 PST 2004

............ 393.1.3 Version 2.4.2 - March 09, 2004

........... 413.1.4 Version 2.4.1 - December 17, 2003

............ 423.1.5 Version 2.4.0 - October 27, 2003

....... 423.1.6 Version 2.4.0 (Release Candidate 4) September 26, 2003

....... 423.1.7 Version 2.4.0 (Release Candidate 3) September 11, 2003

....... 433.1.8 Version 2.4.0 (Release Candidate 2) September 10, 2003

........ 443.1.9 Version 2.4.0 (Release Candidate 1) May 21, 2003

........... 473.1.10 Version 2.2.3 - December 11, 2002

........... 473.1.11 Version 2.2.2 - November 14, 2002

........... 473.1.12 Version 2.2.1 - September 26, 2002

........... 483.1.13 Version 2.2 - September 18, 2002

............ 493.1.14 Version 2.2rc1 - August 29, 2002

...... 59SWISH-Enhanced: SWISH-CONFIG - Configuration File Directives

.......... 594 SWISH-CONFIG - Configuration File Directives

............ 604.1 Swish-e CONFIGURATION FILE

............ 624.1.1 Alphabetical Listing of Directives

............. 654.1.2 Directives that Control Swish

............ 684.1.3 Administrative Headers Directives

............. 684.1.4 Document Source Directives

............ 734.1.5 Document Contents Directives

.......... 984.1.6 Directives for the File Access method only

......... 1034.1.7 Directives for the HTTP Access Method Only

......... 1044.1.8 Directives for the prog Access Method Only

............. 1064.1.9 Document Filter Directives

............ 1064.1.9.1 Filtering with SWISH::Filter

........... 1064.1.9.2 Filtering with the FileFilter feature

................. 1104.2 Document Info

... 111SWISH-Enhanced: SWISH-RUN - Running Swish-e and Command Line Switches

....... 1115 SWISH-RUN - Running Swish-e and Command Line Switches

................. 1125.1 OVERVIEW

................. 1125.2 INDEXING

........... 1135.2.1 Indexing Command Line Arguments

................. 1215.3 SEARCHING

 1 Dec 2005ii

........... 1215.3.1 Searching Command Line Arguments

............... 1305.4 OTHER SWITCHES

................ 1305.5 Merging Index Files

................. 1315.6 Document Info

..... 132SWISH-Enhanced: SWISH-SEARCH - Swish-e Searching Instructions

......... 1326 SWISH-SEARCH - Swish-e Searching Instructions

................. 1336.1 OVERVIEW

............. 1336.2 Searching Syntax and Operations

............... 1336.2.1 Boolean Operators

................. 1346.2.2 Truncation

............... 1356.2.3 Order of Evaluation

................. 1366.2.4 Meta Tags

............... 1366.2.5 Phrase Searching

................. 1376.2.6 Context

................ 1386.3 Searching with Perl

................ 1386.3.1 CGI Danger!

................ 1396.3.2 Perl Modules

................. 1396.4 Document Info

..... 140SWISH-Enhanced: The Swish-e FAQ - Answers to Common Questions

......... 1407 The Swish-e FAQ - Answers to Common Questions

.............. 1417.1 Frequently Asked Questions

............... 1417.1.1 General Questions

.............. 1417.1.1.1 What is Swish-e?

........... 1417.1.1.2 So, is Swish-e a search engine?

.. 1417.1.1.3 Should I upgrade if I’m already running a previous version of Swish-e?

... 1417.1.1.4 Are there binary distributions available for Swish-e on platform foo?

. 1417.1.1.5 Do I need to reindex my site each time I upgrade to a new Swish-e version?

... 1427.1.1.6 What’s the advantage of using the libxml2 library for parsing HTML?

.......... 1427.1.1.7 Does Swish-e include a CGI interface?

............. 1437.1.1.8 How secure is Swish-e?

........ 1437.1.1.9 Should I run Swish-e as the superuser (root)?

........... 1437.1.1.10 What files does Swish-e write?

........ 1437.1.1.11 Can I index PDF and MS-Word documents?

......... 1447.1.1.12 Can I index documents on a web server?

........ 1447.1.1.13 Can I implement keywords in my documents?

........... 1447.1.1.14 What are document properties?

.... 1457.1.1.15 What’s the difference between MetaNames and PropertyNames?

......... 1467.1.1.16 Can Swish-e index multi-byte characters?

................. 1467.1.2 Indexing

........ 1467.1.2.1 How do I pass Swish-e a list of files to index?

........ 1477.1.2.2 How does Swish-e know which parser to use?

......... 1477.1.2.3 Can I reindex and search at the same time?

.............. 1477.1.2.4 Can I index phrases?

..... 1477.1.2.5 How can I prevent phrases from matching across sentences?

........ 1477.1.2.6 Swish-e isn’t indexing a certain word or phrase.

....... 1487.1.2.7 How do I keep Swish-e from indexing numbers?

iii 1 Dec 2005

..... 1487.1.2.8 Swish-e crashes and burns on a certain file. What can I do?

........ 1487.1.2.9 How to I prevent indexing of some documents?

....... 1497.1.2.10 How do I prevent indexing parts of a document?

.... 1497.1.2.11 How do I modify the path or URL of the indexed documents.

......... 1497.1.2.12 How can I index data from a database?

.... 1507.1.2.13 How do I index my PDF, Word, and compressed documents?

............ 1507.1.2.14 How do I filter documents?

..... 1547.1.2.15 Eh, but I just want to know how to index PDF documents!

. 1547.1.2.16 I’m using Windows and can’t get Filters or the prog input method to work!

.......... 1547.1.2.17 How do I index non-English words?

......... 1557.1.2.18 Can I add/remove files from an index?

........ 1567.1.2.19 I run out of memory trying to index my files.

...... 1567.1.2.20 "too many open files" when indexing with -e option

..... 1577.1.2.21 My system admin says Swish-e uses too much of the CPU!

................. 1577.1.3 Spidering

........ 1577.1.3.1 How can I index documents on a web server?

....... 1587.1.3.2 Why does swish report "./swishspider: not found"?
7.1.3.3 I’m using the spider.pl program to spider my web site, but some large files are not

.................. 158indexed.

...... 1587.1.3.4 I still don’t think all my web pages are being indexed.

.......... 1587.1.3.5 Swish is not spidering Javascript links!
1587.1.3.6 How do I spider other websites and combine it with my own (filesystem) index?

................. 1597.1.4 Searching

....... 1597.1.4.1 How do I limit searches to just parts of the index?

............ 1607.1.4.2 How is ranking calculated?

...... 1637.1.4.3 How can I limit searches to the title, body, or comment?

........ 1637.1.4.4 I can’t limit searches to title/body/comment.

. 1637.1.4.5 I’ve tried running the included CGI script and I get a "Internal Server Error"

. 1637.1.4.6 When I try to view the swish.cgi page I see the contents of the Perl program.

..... 1647.1.4.7 How do I make Swish-e highlight words in search results?

........ 1647.1.4.8 Do filters effect the performance during search?

.... 1657.1.5 I have read the FAQ but I still have questions about using Swish-e.

................. 1657.2 Document Info

....... 166SWISH-Enhanced: SWISH-BUGS - List of bugs known in Swish-e

.......... 1668 SWISH-BUGS - List of bugs known in Swish-e

................. 1678.1 DESCRIPTION

.............. 1678.2 Bugs in Swish-e version 2.4

................. 1688.3 Document Info

.......... 169SWISH-Enhanced: Proposed changes for Swish-e 3.0

............. 1699 Proposed changes for Swish-e 3.0

.................. 1709.1 Overview

................. 1709.2 UTF-8 support

........... 1709.3 drop expat-based parsers, require libxml2

.............. 1709.4 Support Incremental Indexing

........... 1709.5 Split code into Search and Indexing code

............... 1719.6 Switch to Content-Types

 1 Dec 2005iv

............ 1729.7 Enhanced the PropertyNames directive

............. 1729.8 Apache/XML style configuration

................. 1729.9 Document Info

..... 174SWISH-Enhanced: SWISH-LIBRARY - Interface to the Swish-e C library

........ 17410 SWISH-LIBRARY - Interface to the Swish-e C library

............. 17510.1 What is the Swish-e C library?

............. 17610.2 Installing the Swish-e library

................ 17610.3 Library Overview

............... 17610.4 Available Functions

................. 17610.4.1 Searching

............... 17910.4.2 Reading Results

........... 18110.4.3 Accessing the Index Header Values

............ 18210.4.4 Accessing Property Meta Data

............... 18310.4.5 Checking for Errors

............... 18410.4.6 Utility Functions

................. 18510.5 Bug-Reports

.................. 18610.6 Author

................. 18610.7 Document Info

..... 187SWISH-Enhanced: SWISH::API - Perl interface to the Swish-e C Library

......... 18711 SWISH::API - Perl interface to the Swish-e C Library

................. 18811.1 SYNOPSIS

................ 18911.2 DESCRIPTION

................ 18911.3 DEPENDENCIES

................. 18911.4 OVERVIEW

................. 19011.5 METHODS

........... 19011.5.1 SWISH::API - Swish Handle Object

............... 19111.5.1.1 Error Handling

.......... 19211.5.1.2 Generating Search and Result Objects

.......... 19211.5.2 SWISH::API::Search - Search Objects

...... 19411.5.3 SWISH::API::Results - Generating and accessing results

............... 19411.5.4 Results Methods

.......... 19511.5.5 SWISH::API::Result - Result Methods

............... 19511.5.6 Utility Methods

.................. 19811.6 NOTES

................. 19911.7 COPYRIGHT

.................. 19911.8 AUTHOR

................. 19911.9 SUPPORT
SWISH-Enhanced: swish.cgi -- Example Perl script for searching with the SWISH-E search

..................... 200engine.

... 20012 swish.cgi -- Example Perl script for searching with the SWISH-E search engine.

................ 20112.1 DESCRIPTION

................ 20112.2 REQUIREMENTS

................ 20212.3 INSTALLATION

............... 20712.4 CONFIGURATION

................. 21012.5 DEBUGGING

.............. 21512.6 Frequently Asked Questions

v 1 Dec 2005

......... 21512.6.1 How do I change the way the output looks?

........ 21512.6.2 How do I use a templating system with swish.cgi?

....... 21612.6.3 Why are there three different highlighting modules?

....... 21612.6.4 My ISP doesn’t provide access to the web server logs

........... 21712.6.5 Why does the output show (NULL)?

...... 21812.6.6 How do I use the SWISH::API perl module with swish.cgi?

.... 21812.6.7 Why does the "Run time" differ when using the SWISH::API module

................. 21812.7 MOD_PERL

................. 22012.8 SpeedyCGI

.................. 22112.9 Spidering

................ 22212.10 Stemmed Indexes

................ 22312.11 DISCLAIMER

................. 22312.12 SUPPORT

................. 22312.13 LICENSE

................. 22412.14 AUTHOR
SWISH-Enhanced: search.cgi -- Example Perl program for searching with Swish-e and

................... 225SWISH::API

... 22513 search.cgi -- Example Perl program for searching with Swish-e and SWISH::API

................ 22613.1 DESCRIPTION

................ 22613.2 REQUIREMENTS

................. 22613.3 OVERVIEW

............. 22713.4 INSTALLATION EXAMPLE

............... 22813.5 Using with SpeedyCGI

.............. 22913.6 Using with MOD_PERL

................. 23113.7 SUPPORT

.................. 23113.8 AUTHOR

.................. 23213.9 LICENSE

................. 23213.10 SEE ALSO

.... 233SWISH-Enhanced: spider.pl - Example Perl program to spider web servers

........ 23314 spider.pl - Example Perl program to spider web servers

................. 23414.1 SYNOPSIS

................ 23514.2 DESCRIPTION

............... 23614.2.1 Running the spider

.......... 23714.2.2 Robots Exclusion Rules and being nice

.............. 23814.2.3 Duplicate Documents

.............. 23814.2.4 Broken relative links

................ 23814.2.5 Compression

................ 23914.3 REQUIREMENTS

.............. 23914.4 CONFIGURATION FILE

............. 24114.5 CONFIGURATION OPTIONS

.............. 24814.6 CALLBACK FUNCTIONS

.............. 25414.6.1 More on setting flags

.................. 25614.7 SIGNALS

................. 25614.8 CHANGES

......... 25614.8.1 Thu Sep 30 2004 - changes for Swish-e 2.4.3

.................. 25714.9 TODO

 1 Dec 2005vi

................ 25714.10 COPYRIGHT

................. 25714.11 SUPPORT

.. 258SWISH-Enhanced: SWISH::Filter - Perl extension for filtering documents with Swish-e

..... 25815 SWISH::Filter - Perl extension for filtering documents with Swish-e

................. 25915.1 SYNOPSIS

................ 25915.2 DESCRIPTION

................. 26015.3 METHODS

............ 26115.3.1 SWISH::Filter->new Options

............... 26215.4 WRITING FILTERS

............ 26515.5 SWISH::Filter::document Methods

......... 26615.5.1 Methods used by end-users and filter authors

............ 26715.5.2 Methods used by filter authors

.............. 26815.6 SWISH::Filters::_BASE

.................. 26915.7 TESTING

................. 27015.8 SUPPORT

............. 27015.9 Bugs, todo items, and other notes

................. 27015.10 AUTHOR

................ 27015.11 COPYRIGHT

vii 1 Dec 2005

	1€€The Swish-e README File
	1.1€€Upgrading?
	1.2€€What is Swish-e?
	1.2.1€€Key features

	1.3€€Where do I get Swish-e?
	1.4€€How Do I Install Swish-e?
	1.5€€The Swish-e Documentation
	1.6€€Where do I get help with Swish-e?
	1.7€€Speling mistakes
	1.8€€Swish-e Development
	1.9€€Swish-e's History
	1.10€€Document Info

	2€€INSTALL - Swish-e Installation Instructions
	2.1€€OVERVIEW
	2.1.1€€Upgrading from previous versions of Swish-e
	2.1.2€€Windows Users

	2.2€€SYSTEM REQUIREMENTS
	2.2.1€€Software Requirements
	2.2.2€€Optional but Recommended Packages

	2.3€€INSTALLATION
	2.3.1€€Building Swish-e
	2.3.2€€Installing without root access
	2.3.3€€Run-time paths
	2.3.4€€Building a Debian Package
	2.3.5€€What's installed
	2.3.6€€Documentation
	2.3.7€€The Swish-e documentation as man†1‡ pages
	2.3.8€€Join the Swish-e discussion list

	2.4€€QUESTIONS AND TROUBLESHOOTING
	2.4.1€€When posting, please provide the following information:

	2.5€€ADDITIONAL INSTALLATION OPTIONS
	2.5.1€€The SWISH::API Perl Module
	2.5.2€€Creating PDF and Postscript documentation

	2.6€€GENERAL CONFIGURATION AND USAGE
	2.6.1€€Introduction to Indexing and Searching
	2.6.2€€Metanames and Properties
	2.6.3€€Getting Started With Swish-e
	2.6.4€€Step 1: Create a Configuration File
	2.6.5€€Step 2: Index your Files
	2.6.6€€Step 3: Search
	2.6.7€€Phrase Searching
	2.6.8€€Boolean Searching
	2.6.9€€Context Searching
	2.6.10€€META Tags
	2.6.11€€Spidering and Searching with a Web form.

	2.7€€Indexing Other Types of Documents - Filtering
	2.7.1€€Filtering Overview
	2.7.2€€Filtering Examples

	2.8€€Document Info

	3€€CHANGES - List of revisions
	3.1€€Revision History
	3.1.1€€Version 2.4.3 December 9, 2004
	3.1.2€€Version 2.4.3-pr1 - Wed Dec 1 09:52:50 PST 2004
	3.1.3€€Version 2.4.2 - March 09, 2004
	3.1.4€€Version 2.4.1 - December 17, 2003
	3.1.5€€Version 2.4.0 - October 27, 2003
	3.1.6€€Version 2.4.0 †Release Candidate 4‡ September 26, 2003
	3.1.7€€Version 2.4.0 †Release Candidate 3‡ September 11, 2003
	3.1.8€€Version 2.4.0 †Release Candidate 2‡ September 10, 2003
	3.1.9€€Version 2.4.0 †Release Candidate 1‡ May 21, 2003
	3.1.10€€Version 2.2.3 - December 11, 2002
	3.1.11€€Version 2.2.2 - November 14, 2002
	3.1.12€€Version 2.2.1 - September 26, 2002
	3.1.13€€Version 2.2 - September 18, 2002
	3.1.14€€Version 2.2rc1 - August 29, 2002

	4€€SWISH-CONFIG - Configuration File Directives
	4.1€€Swish-e CONFIGURATION FILE
	4.1.1€€Alphabetical Listing of Directives
	4.1.2€€Directives that Control Swish
	4.1.3€€Administrative Headers Directives
	4.1.4€€Document Source Directives
	4.1.5€€Document Contents Directives
	4.1.6€€Directives for the File Access method only
	4.1.7€€Directives for the HTTP Access Method Only
	4.1.8€€Directives for the prog Access Method Only
	4.1.9€€Document Filter Directives
	4.1.9.1€€Filtering with SWISH::Filter
	4.1.9.2€€Filtering with the FileFilter feature

	4.2€€Document Info

	5€€SWISH-RUN - Running Swish-e and Command Line Switches
	5.1€€OVERVIEW
	5.2€€INDEXING
	5.2.1€€Indexing Command Line Arguments

	5.3€€SEARCHING
	5.3.1€€Searching Command Line Arguments

	5.4€€OTHER SWITCHES
	5.5€€Merging Index Files
	5.6€€Document Info

	6€€SWISH-SEARCH - Swish-e Searching Instructions
	6.1€€OVERVIEW
	6.2€€Searching Syntax and Operations
	6.2.1€€Boolean Operators
	6.2.2€€Truncation
	6.2.3€€Order of Evaluation
	6.2.4€€Meta Tags
	6.2.5€€Phrase Searching
	6.2.6€€Context

	6.3€€Searching with Perl
	6.3.1€€CGI Danger!
	6.3.2€€Perl Modules

	6.4€€Document Info

	7€€The Swish-e FAQ - Answers to Common Questions
	7.1€€Frequently Asked Questions
	7.1.1€€General Questions
	7.1.1.1€€What is Swish-e?
	7.1.1.2€€So, is Swish-e a search engine?
	7.1.1.3€€Should I upgrade if I'm already running a previous version of Swish-e?
	7.1.1.4€€Are there binary distributions available for Swish-e on platform foo?
	7.1.1.5€€Do I need to reindex my site each time I upgrade to a new Swish-e version?
	7.1.1.6€€What's the advantage of using the libxml2 library for parsing HTML?
	7.1.1.7€€Does Swish-e include a CGI interface?
	7.1.1.8€€How secure is Swish-e?
	7.1.1.9€€Should I run Swish-e as the superuser †root‡?
	7.1.1.10€€What files does Swish-e write?
	7.1.1.11€€Can I index PDF and MS-Word documents?
	7.1.1.12€€Can I index documents on a web server?
	7.1.1.13€€Can I implement keywords in my documents?
	7.1.1.14€€What are document properties?
	7.1.1.15€€What's the difference between MetaNames and PropertyNames?
	7.1.1.16€€Can Swish-e index multi-byte characters?

	7.1.2€€Indexing
	7.1.2.1€€How do I pass Swish-e a list of files to index?
	7.1.2.2€€How does Swish-e know which parser to use?
	7.1.2.3€€Can I reindex and search at the same time?
	7.1.2.4€€Can I index phrases?
	7.1.2.5€€How can I prevent phrases from matching across sentences?
	7.1.2.6€€Swish-e isn't indexing a certain word or phrase.
	7.1.2.7€€How do I keep Swish-e from indexing numbers?
	7.1.2.8€€Swish-e crashes and burns on a certain file. What can I do?
	7.1.2.9€€How to I prevent indexing of some documents?
	7.1.2.10€€How do I prevent indexing parts of a document?
	7.1.2.11€€How do I modify the path or URL of the indexed documents.
	7.1.2.12€€How can I index data from a database?
	7.1.2.13€€How do I index my PDF, Word, and compressed documents?
	7.1.2.14€€How do I filter documents?
	7.1.2.15€€Eh, but I just want to know how to index PDF documents!
	7.1.2.16€€I'm using Windows and can't get Filters or the prog input method to work!
	7.1.2.17€€How do I index non-English words?
	7.1.2.18€€Can I add/remove files from an index?
	7.1.2.19€€I run out of memory trying to index my files.
	7.1.2.20€€"too many open files" when indexing with -e option
	7.1.2.21€€My system admin says Swish-e uses too much of the CPU!

	7.1.3€€Spidering
	7.1.3.1€€How can I index documents on a web server?
	7.1.3.2€€Why does swish report "./swishspider: not found"?
	7.1.3.3€€I'm using the spider.pl program to spider my web site, but some large files are not indexed.
	7.1.3.4€€I still don't think all my web pages are being indexed.
	7.1.3.5€€Swish is not spidering Javascript links!
	7.1.3.6€€How do I spider other websites and combine it with my own †filesystem‡ index?

	7.1.4€€Searching
	7.1.4.1€€How do I limit searches to just parts of the index?
	7.1.4.2€€How is ranking calculated?
	7.1.4.3€€How can I limit searches to the title, body, or comment?
	7.1.4.4€€I can't limit searches to title/body/comment.
	7.1.4.5€€I've tried running the included CGI script and I get a "Internal Server Error"
	7.1.4.6€€When I try to view the swish.cgi page I see the contents of the Perl program.
	7.1.4.7€€How do I make Swish-e highlight words in search results?
	7.1.4.8€€Do filters effect the performance during search?

	7.1.5€€I have read the FAQ but I still have questions about using Swish-e.

	7.2€€Document Info

	8€€SWISH-BUGS - List of bugs known in Swish-e
	8.1€€DESCRIPTION
	8.2€€Bugs in Swish-e version 2.4
	8.3€€Document Info

	9€€Proposed changes for Swish-e 3.0
	9.1€€Overview
	9.2€€UTF-8 support
	9.3€€drop expat-based parsers, require libxml2
	9.4€€Support Incremental Indexing
	9.5€€Split code into Search and Indexing code
	9.6€€Switch to Content-Types
	9.7€€Enhanced the PropertyNames directive
	9.8€€Apache/XML style configuration
	9.9€€Document Info

	10€€SWISH-LIBRARY - Interface to the Swish-e C library
	10.1€€What is the Swish-e C library?
	10.2€€Installing the Swish-e library
	10.3€€Library Overview
	10.4€€Available Functions
	10.4.1€€Searching
	10.4.2€€Reading Results
	10.4.3€€Accessing the Index Header Values
	10.4.4€€Accessing Property Meta Data
	10.4.5€€Checking for Errors
	10.4.6€€Utility Functions

	10.5€€Bug-Reports
	10.6€€Author
	10.7€€Document Info

	11€€SWISH::API - Perl interface to the Swish-e C Library
	11.1€€SYNOPSIS
	11.2€€DESCRIPTION
	11.3€€DEPENDENCIES
	11.4€€OVERVIEW
	11.5€€METHODS
	11.5.1€€SWISH::API - Swish Handle Object
	11.5.1.1€€Error Handling
	11.5.1.2€€Generating Search and Result Objects

	11.5.2€€SWISH::API::Search - Search Objects
	11.5.3€€SWISH::API::Results - Generating and accessing results
	11.5.4€€Results Methods
	11.5.5€€SWISH::API::Result - Result Methods
	11.5.6€€Utility Methods

	11.6€€NOTES
	11.7€€COPYRIGHT
	11.8€€AUTHOR
	11.9€€SUPPORT

	12€€swish.cgi -- Example Perl script for searching with the SWISH-E search engine.
	12.1€€DESCRIPTION
	12.2€€REQUIREMENTS
	12.3€€INSTALLATION
	12.4€€CONFIGURATION
	12.5€€DEBUGGING
	12.6€€Frequently Asked Questions
	12.6.1€€How do I change the way the output looks?
	12.6.2€€How do I use a templating system with swish.cgi?
	12.6.3€€Why are there three different highlighting modules?
	12.6.4€€My ISP doesn't provide access to the web server logs
	12.6.5€€Why does the output show †NULL‡?
	12.6.6€€How do I use the SWISH::API perl module with swish.cgi?
	12.6.7€€Why does the "Run time" differ when using the SWISH::API module

	12.7€€MOD_PERL
	12.8€€SpeedyCGI
	12.9€€Spidering
	12.10€€Stemmed Indexes
	12.11€€DISCLAIMER
	12.12€€SUPPORT
	12.13€€LICENSE
	12.14€€AUTHOR

	13€€search.cgi -- Example Perl program for searching with Swish-e and SWISH::API
	13.1€€DESCRIPTION
	13.2€€REQUIREMENTS
	13.3€€OVERVIEW
	13.4€€INSTALLATION EXAMPLE
	13.5€€Using with SpeedyCGI
	13.6€€Using with MOD_PERL
	13.7€€SUPPORT
	13.8€€AUTHOR
	13.9€€LICENSE
	13.10€€SEE ALSO

	14€€spider.pl - Example Perl program to spider web servers
	14.1€€SYNOPSIS
	14.2€€DESCRIPTION
	14.2.1€€Running the spider
	14.2.2€€Robots Exclusion Rules and being nice
	14.2.3€€Duplicate Documents
	14.2.4€€Broken relative links
	14.2.5€€Compression

	14.3€€REQUIREMENTS
	14.4€€CONFIGURATION FILE
	14.5€€CONFIGURATION OPTIONS
	14.6€€CALLBACK FUNCTIONS
	14.6.1€€More on setting flags

	14.7€€SIGNALS
	14.8€€CHANGES
	14.8.1€€Thu Sep 30 2004 - changes for Swish-e 2.4.3

	14.9€€TODO
	14.10€€COPYRIGHT
	14.11€€SUPPORT

	15€€SWISH::Filter - Perl extension for filtering documents with Swish-e
	15.1€€SYNOPSIS
	15.2€€DESCRIPTION
	15.3€€METHODS
	15.3.1€€SWISH::Filter->new Options

	15.4€€WRITING FILTERS
	15.5€€SWISH::Filter::document Methods
	15.5.1€€Methods used by end-users and filter authors
	15.5.2€€Methods used by filter authors

	15.6€€SWISH::Filters::_BASE
	15.7€€TESTING
	15.8€€SUPPORT
	15.9€€Bugs, todo items, and other notes
	15.10€€AUTHOR
	15.11€€COPYRIGHT

